954 resultados para First Order Systems
Resumo:
First-order temporal logic is a concise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics has identified important enumerable and even decidable fragments. In this paper, we develop a clausal resolution method for the monodic fragment of first-order temporal logic over expanding domains. We first define a normal form for monodic formulae and then introduce novel resolution calculi that can be applied to formulae in this normal form. We state correctness and completeness results for the method. We illustrate the method on a comprehensive example. The method is based on classical first-order resolution and can, thus, be efficiently implemented.
Resumo:
It has been shown recently that monodic first-order temporal logic without functional symbols but with equality is incomplete, i.e., the set of the valid formulae of this logic is not recursively enumerable. In this paper we show that an even simpler fragment consisting of monodic monadic two-variable formulae is not recursively enumerable.
Resumo:
In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the existence of a holomorphic generalized solution u of the PDE[GRAPHICS]where f is a given holomorphic generalized function and (alpha (1),...alpha (m)) is an element of C-m\{0}.
Resumo:
In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work deals with a first-order formalism for dark energy and dust in standard cosmology, for models described by a real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.