917 resultados para First Brazilian Colloquium of Mathematics
Resumo:
A stereospecific first total synthesis of a natural thapsane 1, from the readily available cyclogeraniol 8, is described.
Resumo:
The total synthesis of the unusual sesquiterpene (+/-)-myltayl-4(12)-ene 3 starting from the readily available cyclogeraniol 5 and the single-crystal X-ray structure of the 4-nitrobenzoate 12 of the noralcohol 11 are described.
Resumo:
The first hyperpolarizabilities of some symmetrically substituted triazines have been measured and compared with those of the corresponding symmetrically substituted benzenes. The octupolar triazines have higher quadratic polarizabilities than the corresponding octupolar benzenes. The triazine ring seems to be a better central acceptor than the benzene ring, but if it acts as a donor as in sym-triphenyl triazine, the nonlinearity improves further.
Resumo:
In this paper we report the first hyperpolarizabilities (beta) of 12, sulfophthalein dyes. Since these dyes are ionic in nature, their second-order nonlinearities were measured by the hyper-Rayleigh scattering technique in solution. The measured beta values are large and highly solvent dependent. Inclusion of solvent polarity in ab initio estimates of static second-order polarizability does not fully account for the experimental beta values. Contributions from the dissociated forms of the dye in different solvents seem to play an important role in enhancing beta in these systems.
Resumo:
Ab-initio calculations are used to determine the parameters that determine magnonic band structure of PdnFem multilayers (n = 2, m <= 8). We obtain the layer-resolved magnetization, the exchange coupling, and the magnetic anisotropy of the Pd-Fe structures. The Fe moment is 3.0 mu(B) close to the Pd layers and 2.2 mu(B) in the middle of the Fe layers. An intriguing but not usually considered aspect is that the elemental Pd is nonmagnetic, similar to Cu spacer layers in other multilayer systems. This leads to a pre-asymptotic ferromagnetic coupling through the Pd (about 40 mJ/m(2)). Furthermore, the Pd acquires a small moment due to spin polarization by neighboring Fe atoms, which translates into magnetic anisotropy. The anisotropies are large, in the range typical for L1(0) structures, which is beneficial for high-frequency applications. (C) 2011 American Institute of Physics. doi:10.1063/1.3556763]
Resumo:
The first enantiospecific total synthesis of (-)-9-pupukeanone, starting from (R)-carvone employing a combination of Michael-Michael reaction and an intramolecular rhodium carbenoid C H insertion reaction as key steps, is described. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A lightning return stroke model for a downward flash is proposed. The model includes underlying physical phenomena governing return stroke evolution, namely, electric field due to charge distributed along the leader and cloud, transient enhancement of series channel conductance at the bridging regime, and the nonlinear variation of channel conductance, which supports the return stroke current evolution. Thermal effects of free burning arc at the stroke wave front and its impact on channel conductance are studied. A first-order arc model for determining the dynamic channel conductance along with a field-dependent conductivity for corona sheath is used in the model. The model predicts consistent current propagation along the channel with regard to current amplitude and return stroke velocity. The model is also capable of predicting the remote electromagnetic fields that are consistent with the experimental observations.
Resumo:
Enantiospecific first total synthesis of the linear triquinane sesquiterpene cucumin-H has been described. (R)-Limonene has been employed as the chiral starting material and a combination of Claisen rearrangement, intramolecular cyclopropanation and Nazarov reactions are employed for the regio- and stereospecific construction of the triquinane framework.
Resumo:
We show with the aid of first-principles electronic structure calculations that suitable choice of the capping ligands may be an important control parameter for crystal structure engineering of nanoparticles. Our calculations on CdS nanocrystals reveal that the binding energy of model trioctylphosphine molecules on the (001) facets of zincblende nanocrystals is larger compared to that on wurtzite facets. Similarly, the binding energy of model cis-oleic acid is found to be dominant for the (10 (1) over bar0) facets of wurtzite structure. As a consequence, trioctylphosphine as a capping agent stabilizes the zincblende structure while cis-oleic acid stabilizes the wurtzite phase by influencing the surface energy, which has a sizable contribution to the energetics of a nanocrystal. Our detailed analysis suggests that the binding of molecules on the nanocrystalline facets depends on the surface topology of the facets, the coordination of the surface atoms where the capping molecule is likely to attach, and the conformation of the capping molecule.
Resumo:
Enantiospecific first total synthesis of the angular triquinane sesquiterpene (65,7R)-silphiperfolan-6-ol has been accomplished, starting from 2-(3-isopropenyl-2-methylene-1-methylcyclopent-1-yl)acetic acid (readily available from (R)-limonene) employing an efficient, regioselective intramolecular rhodium carbenoid insertion into the CH bond of a tertiary methyl group as the key step. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The enantiospecific first total synthesis of the enantiomer of the irregular sesquiterpene from Ligusticumgrayi allothapsenol, starting from the readily available monoterpene (R)-carvone, is described, which confirmed the assumed absolute configuration of the natural product.
Resumo:
A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.
Resumo:
Melting and freezing transitions in two dimensional (2D) systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems: the melting of 2D molecular solids is still largely unexplored. In order to understand the role of anisotropy as well as multiple energy and length scales present in molecular systems, here we report computer simulation studies of melting of 2D molecular systems. We computed a limited portion of the solid-liquid phase diagram. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram consisting of isotropic liquid and two crystalline phases-honeycomb and oblique. The nature of the transition depends on the relative strength of the anisotropic interaction and a strongly first order melting turns into a weakly first order transition on increasing the strength of the isotropic interaction. This crossover can be attributed to an increase in stiffness of the solid phase free energy minimum on increasing the strength of the anisotropic interaction. The defects involved in melting of molecular systems are quite different from those known for the atomic systems.