922 resultados para Firewalls (Computer security)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Secrecy is fundamental to computer security, but real systems often cannot avoid leaking some secret information. For this reason, the past decade has seen growing interest in quantitative theories of information flow that allow us to quantify the information being leaked. Within these theories, the system is modeled as an information-theoretic channel that specifies the probability of each output, given each input. Given a prior distribution on those inputs, entropy-like measures quantify the amount of information leakage caused by the channel. ^ This thesis presents new results in the theory of min-entropy leakage. First, we study the perspective of secrecy as a resource that is gradually consumed by a system. We explore this intuition through various models of min-entropy consumption. Next, we consider several composition operators that allow smaller systems to be combined into larger systems, and explore the extent to which the leakage of a combined system is constrained by the leakage of its constituents. Most significantly, we prove upper bounds on the leakage of a cascade of two channels, where the output of the first channel is used as input to the second. In addition, we show how to decompose a channel into a cascade of channels. ^ We also establish fundamental new results about the recently-proposed g-leakage family of measures. These results further highlight the significance of channel cascading. We prove that whenever channel A is composition refined by channel B, that is, whenever A is the cascade of B and R for some channel R, the leakage of A never exceeds that of B, regardless of the prior distribution or leakage measure (Shannon leakage, guessing entropy leakage, min-entropy leakage, or g-leakage). Moreover, we show that composition refinement is a partial order if we quotient away channel structure that is redundant with respect to leakage alone. These results are strengthened by the proof that composition refinement is the only way for one channel to never leak more than another with respect to g-leakage. Therefore, composition refinement robustly answers the question of when a channel is always at least as secure as another from a leakage point of view.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Digital forensics is a rapidly expanding field, due to the continuing advances in computer technology and increases in data stage capabilities of devices. However, the tools supporting digital forensics investigations have not kept pace with this evolution, often leaving the investigator to analyse large volumes of textual data and rely heavily on their own intuition and experience. Aim: This research proposes that given the ability of information visualisation to provide an end user with an intuitive way to rapidly analyse large volumes of complex data, such approached could be applied to digital forensics datasets. Such methods will be investigated; supported by a review of literature regarding the use of such techniques in other fields. The hypothesis of this research body is that by utilising exploratory information visualisation techniques in the form of a tool to support digital forensic investigations, gains in investigative effectiveness can be realised. Method:To test the hypothesis, this research examines three different case studies which look at different forms of information visualisation and their implementation with a digital forensic dataset. Two of these case studies take the form of prototype tools developed by the researcher, and one case study utilises a tool created by a third party research group. A pilot study by the researcher is conducted on these cases, with the strengths and weaknesses of each being drawn into the next case study. The culmination of these case studies is a prototype tool which was developed to resemble a timeline visualisation of the user behaviour on a device. This tool was subjected to an experiment involving a class of university digital forensics students who were given a number of questions about a synthetic digital forensic dataset. Approximately half were given the prototype tool, named Insight, to use, and the others given a common open-source tool. The assessed metrics included: how long the participants took to complete all tasks, how accurate their answers to the tasks were, and how easy the participants found the tasks to complete. They were also asked for their feedback at multiple points throughout the task. Results:The results showed that there was a statistically significant increase in accuracy for one of the six tasks for the participants using the Insight prototype tool. Participants also found completing two of the six tasks significantly easier when using the prototype tool. There were no statistically significant different difference between the completion times of both participant groups. There were no statistically significant differences in the accuracy of participant answers for five of the six tasks. Conclusions: The results from this body of research show that there is evidence to suggest that there is the potential for gains in investigative effectiveness when information visualisation techniques are applied to a digital forensic dataset. Specifically, in some scenarios, the investigator can draw conclusions which are more accurate than those drawn when using primarily textual tools. There is also evidence so suggest that the investigators found these conclusions to be reached significantly more easily when using a tool with a visual format. None of the scenarios led to the investigators being at a significant disadvantage in terms of accuracy or usability when using the prototype visual tool over the textual tool. It is noted that this research did not show that the use of information visualisation techniques leads to any statistically significant difference in the time taken to complete a digital forensics investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El trabajo plantea un aporte al framework de ingeniería social (The Social Engineering Framework) para la evaluación del riesgo y mitigación de distintos vectores de ataque, por medio del análisis de árboles de ataque -- Adicionalmente se muestra una recopilación de estadísticas de ataques realizados a compañías de diferentes industrias relacionadas con la seguridad informática, enfocado en los ataques de ingeniería social y las consecuencias a las que se enfrentan las organizaciones -- Se acompañan las estadísticas con la descripción de ejemplos reales y sus consecuencias

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The immune system provides an ideal metaphor for anomaly detection in general and computer security in particular. Based on this idea, artificial immune systems have been used for a number of years for intrusion detection, unfortunately so far with little success. However, these previous systems were largely based on immunological theory from the 1970s and 1980s and over the last decade our understanding of immunological processes has vastly improved. In this paper we present two new immune inspired algorithms based on the latest immunological discoveries, such as the behaviour of Dendritic Cells. The resultant algorithms are applied to real world intrusion problems and show encouraging results. Overall, we believe there is a bright future for these next generation artificial immune algorithms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

libtissue is a software system for implementing and testing AIS algorithms on real-world computer security problems. AIS algorithms are implemented as a collection of cells, antigen and signals interacting within a tissue compartment. Input data to the tissue comes in the form of realtime events generated by sensors monitoring a system under surveillance, and cells are actively able to affect the monitored system through response mechanisms. libtissue is being used by researchers on a project at the University of Nottingham to explore the application of a range of immune-inspired algorithms to problems in intrusion detection. This talk describes the architecture and design of libtissue, along with the implementation of a simple algorithm and its application to a computer security problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.