917 resultados para Finger Tapping
Cwc24p, a novel Saccharomyces cerevisiae nuclear ring finger protein, affects pre-snoRNA U3 splicing
Resumo:
U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3 `-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc 24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.
Resumo:
Most science centres in Canada employ science-educated floor staff to motivate visitorsto have fun while enhancing the educational reach of the exhibits. Although bright andsensitive to visitors’ needs, floor staff are rarely consulted in the planning,implementation, and modification phases of an exhibit. Instead, many developmentteams rely on costly third-party evaluations or skip the front-end and formativeevaluations all together, leading to costly errors that could have been avoided. This studywill seek to reveal a correlation between floor staff’s perception of visitors’ interactionswith an exhibit and visitors’ actual experiences. If a correlation exists, a recommendationcould be made to encourage planning teams to include floor staff in the formative andsummative evaluations of an exhibit. This is especially relevant to science centres withlimited budgets and for whom a divide exists between floor staff and management.In this study, a formative evaluation of one exhibit was conducted, measuring both floorstaff’s perceptions of the visitor experience and visitors’ own perceptions of the exhibit.Floor staff were then trained on visitor evaluation methods. A week later, floor staff andvisitors were surveyed a second time on a different exhibit to determine whether anincrease in accuracy existed.The training session increased the specificity of the motivation and comprehensionresponses and the enthusiasm of the staff, but not their ability to predict observedbehaviours with respect to ergonomics, learning indicators, holding power, and successrates. The results revealed that although floor staff underestimated visitors’ success ratesat the exhibits, staff accurately predicted visitors’ behaviours with respect to holdingpower, ergonomics, learning indicators, motivation and comprehension, both before andafter the staff training.
Resumo:
Objective: To compare results from various tapping tests with diary responses in advanced PD. Background: A home environment test battery for assessing patient state in advanced PD, consisting of diary assessments and motor tests was constructed for a hand computer with touch screen and mobile communication. The diary questions: 1. walking, 2. time in off , on and dyskinetic states, 3. off at worst, 4. dyskinetic at worst, 5. cramps, and 6. satisfied with function, relate to the recent past. Question 7, self-assessment, allows seven steps from -3 ( very off ) to +3 ( very dyskinetic ) and relate to right now. Tapping tests outline: 8. Alternately tapping two fields (un-cued) with right hand 9. Same as 8 but using left hand 10. Tapping an active field (out of two) following a system-generated rhythm (increasing speed) with the dominant hand 11. Tapping an active field (out of four) that randomly changes location when tapped using the dominant hand Methods: 65 patients (currently on Duodopa, or candidates for this treatment) entered diary responses and performed tapping tests four times per day during one to six periods of seven days length. In total there were 224 test periods and 6039 test occasions. Speed for tapping test 10 was discardedand tests 8 and 9 were combined by taking means. Descriptive statistics were used to present the variation of the test variables in relation to self assessment (question 7). Pearson correlation coefficients between speed and accuracy (percent correct) in tapping tests and diary responses were calculated. Results: Mean compliance (percentage completed test occasions per test period) was 83% and the median was 93%. There were large differences in both mean tapping speed and accuracy between the different self-assessed states. Correlations between diary responses and tapping results were small (-0.2 to 0.3, negative values for off-time and dyskinetic-time that had opposite scale directions). Correlations between tapping results were all positive (0.1 to 0.6). Conclusions: The diary responses and tapping results provided different information. The low correlations can partly be explained by the fact that questions related to the past and by random variability, which could be reduced by taking means over test periods. Both tapping speed and accuracy reflect the motor function of the patient to a large extent.
Resumo:
Objective To design, develop and set up a web-based system for enabling graphical visualization of upper limb motor performance (ULMP) of Parkinson’s disease (PD) patients to clinicians. Background Sixty-five patients diagnosed with advanced PD have used a test battery, implemented in a touch-screen handheld computer, in their home environment settings over the course of a 3-year clinical study. The test items consisted of objective measures of ULMP through a set of upper limb motor tests (finger to tapping and spiral drawings). For the tapping tests, patients were asked to perform alternate tapping of two buttons as fast and accurate as possible, first using the right hand and then the left hand. The test duration was 20 seconds. For the spiral drawing test, patients traced a pre-drawn Archimedes spiral using the dominant hand, and the test was repeated 3 times per test occasion. In total, the study database consisted of symptom assessments during 10079 test occasions. Methods Visualization of ULMP The web-based system is used by two neurologists for assessing the performance of PD patients during motor tests collected over the course of the said study. The system employs animations, scatter plots and time series graphs to visualize the ULMP of patients to the neurologists. The performance during spiral tests is depicted by animating the three spiral drawings, allowing the neurologists to observe real-time accelerations or hesitations and sharp changes during the actual drawing process. The tapping performance is visualized by displaying different types of graphs. Information presented included distribution of taps over the two buttons, horizontal tap distance vs. time, vertical tap distance vs. time, and tapping reaction time over the test length. Assessments Different scales are utilized by the neurologists to assess the observed impairments. For the spiral drawing performance, the neurologists rated firstly the ‘impairment’ using a 0 (no impairment) – 10 (extremely severe) scale, secondly three kinematic properties: ‘drawing speed’, ‘irregularity’ and ‘hesitation’ using a 0 (normal) – 4 (extremely severe) scale, and thirdly the probable ‘cause’ for the said impairment using 3 choices including Tremor, Bradykinesia/Rigidity and Dyskinesia. For the tapping performance, a 0 (normal) – 4 (extremely severe) scale is used for first rating four tapping properties: ‘tapping speed’, ‘accuracy’, ‘fatigue’, ‘arrhythmia’, and then the ‘global tapping severity’ (GTS). To achieve a common basis for assessment, initially one neurologist (DN) performed preliminary ratings by browsing through the database to collect and rate at least 20 samples of each GTS level and at least 33 samples of each ‘cause’ category. These preliminary ratings were then observed by the two neurologists (DN and PG) to be used as templates for rating of tests afterwards. In another track, the system randomly selected one test occasion per patient and visualized its items, that is tapping and spiral drawings, to the two neurologists. Statistical methods Inter-rater agreements were assessed using weighted Kappa coefficient. The internal consistency of properties of tapping and spiral drawing tests were assessed using Cronbach’s α test. One-way ANOVA test followed by Tukey multiple comparisons test was used to test if mean scores of properties of tapping and spiral drawing tests were different among GTS and ‘cause’ categories, respectively. Results When rating tapping graphs, inter-rater agreements (Kappa) were as follows: GTS (0.61), ‘tapping speed’ (0.89), ‘accuracy’ (0.66), ‘fatigue’ (0.57) and ‘arrhythmia’ (0.33). The poor inter-rater agreement when assessing “arrhythmia” may be as a result of observation of different things in the graphs, among the two raters. When rating animated spirals, both raters had very good agreement when assessing severity of spiral drawings, that is, ‘impairment’ (0.85) and irregularity (0.72). However, there were poor agreements between the two raters when assessing ‘cause’ (0.38) and time-information properties like ‘drawing speed’ (0.25) and ‘hesitation’ (0.21). Tapping properties, that is ‘tapping speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’ had satisfactory internal consistency with a Cronbach’s α coefficient of 0.77. In general, the trends of mean scores of tapping properties worsened with increasing levels of GTS. The mean scores of the four properties were significantly different to each other, only at different levels. In contrast from tapping properties, kinematic properties of spirals, that is ‘drawing speed’, ‘irregularity’ and ‘hesitation’ had a questionable consistency among them with a coefficient of 0.66. Bradykinetic spirals were associated with more impaired speed (mean = 83.7 % worse, P < 0.001) and hesitation (mean = 77.8% worse, P < 0.001), compared to dyskinetic spirals. Both these ‘cause’ categories had similar mean scores of ‘impairment’ and ‘irregularity’. Conclusions In contrast from current approaches used in clinical setting for the assessment of PD symptoms, this system enables clinicians to animate easily and realistically the ULMP of patients who at the same time are at their homes. Dynamic access of visualized motor tests may also be useful when observing and evaluating therapy-related complications such as under- and over-medications. In future, we foresee to utilize these manual ratings for developing and validating computer methods for automating the process of assessing ULMP of PD patients.
Resumo:
This paper presents the development and evaluation of a method for enabling quantitative and automatic scoring of alternating tapping performance of patients with Parkinson’s disease (PD). Ten healthy elderly subjects and 95 patients in different clinical stages of PD have utilized a touch-pad handheld computer to perform alternate tapping tests in their home environments. First, a neurologist used a web-based system to visually assess impairments in four tapping dimensions (‘speed’, ‘accuracy’, ‘fatigue’ and ‘arrhythmia’) and a global tapping severity (GTS). Second, tapping signals were processed with time series analysis and statistical methods to derive 24 quantitative parameters. Third, principal component analysis was used to reduce the dimensions of these parameters and to obtain scores for the four dimensions. Finally, a logistic regression classifier was trained using a 10-fold stratified cross-validation to map the reduced parameters to the corresponding visually assessed GTS scores. Results showed that the computed scores correlated well to visually assessed scores and were significantly different across Unified Parkinson’s Disease Rating Scale scores of upper limb motor performance. In addition, they had good internal consistency, had good ability to discriminate between healthy elderly and patients in different disease stages, had good sensitivity to treatment interventions and could reflect the natural disease progression over time. In conclusion, the automatic method can be useful to objectively assess the tapping performance of PD patients and can be included in telemedicine tools for remote monitoring of tapping.
Resumo:
Over the past few years, innovation has increasingly garnered the headlines as one of the core competencies every sustainable organisation must have. Yet, it is the idea which is the foundation of any innovation. This paper draws together knowledge about idea generation, and its management, and how the process of encouraging ideas, creativity and then managing them effectively will enhance the opportunities of successfully finding and implementing innovations which will add value to the organisation and its stakeholders. Extensive review of literature in the field of idea and innovation management, as well as a study of Souza Cruz¿s recently conceptualised and implemented Idea Management programme has brought together the many facets involved in successfully harnessing and implementing ideas.
Resumo:
The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2. 3, and 3short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform, 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.
Resumo:
In last decades, control of nonlinear dynamic systems became an important and interesting problem studied by many authors, what results the appearance of lots of works about this subject in the scientific literature. In this paper, an Atomic Force Microscope micro cantilever operating in tapping mode was modeled, and its behavior was studied using bifurcation diagrams, phase portraits, time history, Poincare maps and Lyapunov exponents. Chaos was detected in an interval of time; those phenomena undermine the achievement of accurate images by the sample surface. In the mathematical model, periodic and chaotic motion was obtained by changing parameters. To control the chaotic behavior of the system were implemented two control techniques. The SDRE control (State Dependent Riccati Equation) and Time-delayed feedback control. Simulation results show the feasibility of the bothmethods, for chaos control of an AFM system. Copyright © 2011 by ASME.
Resumo:
The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Amputations affect both the physical and the psychological aspects of an individual, causing significant impact on self-esteem. The main causes of finger amputations are work-related accidents with dangerous machinery, road traffic accidents, and animal bites, as well as systemic diseases such as diabetes. This report aims to describe a simple technique for fabrication of implant-retained finger prosthesis with a modified base of the retention system.Case Description and Methods: The O-Ring retention system was used with a modified hexagon-shaped base and a metallic capsule adapted to the acrylic resin to attach the prosthesis to the implant.Findings and Outcomes: The prosthesis was made with silicone, and after osseointegration, it was installed without complications, leading to a patient satisfied with the end result and encouraged to return to social life.
Resumo:
Introduction: Lateral condensation effectiveness may be influenced by the gutta-percha and finger spreader taper used during root canal obturation. Objective: To evaluate the penetration ability of finger spreader into simulated root canals prepared using MTwo rotary system and filled with different gutta-percha and finger spreader tapers. Material and methods: Resin blocks with curved root canals had the apical diameter enlarged up to #25.06 and distributed into groups (n = 6) according to the gutta-percha taper (#25.02, #25.04, and #25.06) and the finger spreader (#30 and #35 NiTi, and stainless steel B) used to perform cold lateral condensation. After applying a load of 1.5 Kg over the finger spreaders’ head, the distance between the finger spread tip and the apical limit of the root canal preparation were obtained. The data were submitted to Anova and Tukey-Krammer’s test, with 5% of significance. Results: The gutta-percha cones with 0.02 taper enabled higher finger spreader penetration when compared to 0.04 and 0.06 tapers (p < 0.05), which were similar between each other (p > 0.05), regardless of the type and diameter of the finger spreader used. When different finger spreaders were compared among themselves, stainless steel B showed higher penetration ability (p < 0.05). Conclusion: It was concluded that the stainless-steel finger spreaders showed superior penetration ability and gutta-percha with lower tapers enabled a more effective lateral condensation at the apical third.
Resumo:
Hand deformities affect aesthetics function of hand severely compromised and also cause psychological disturbances. This report describes the fabrication of a silicone finger prosthesis for a patient after an accident at work. The finger prosthesis was retained by a vacuum effect on the stump. The silicone material Silastic-MDX 44210 was used to provide function and aesthetics. The finger prosthesis offered psychological, functional and rehabilitative advantages for the patient. Restoring the natural appearance with the prosthesis eliminated the trauma generated by the dysfunction and represented an efficient psychological therapy.