948 resultados para Financial and actuarial balance
Resumo:
Workplace wellness programs have revealed immense beneficial results for both the employer and employee. Examples of results include decrease in absenteeism, turnover rate, medical claims and increases in employee satisfaction, productivity, and return on investment. However, the approach taken when implementing requires greater attention since such programs and the financial and/or non-financial incentives chosen have shown to significantly impact employee participation thus the amount of savings the organization experiences. A systematic review was conducted to evaluate the overall effectiveness of workplace wellness programs on employee health status and lifestyle change, recognize the majority types of returns observed by such programs, and identify whether financial or non-financial incentives created a greater effect on the employee. Overall employee health status improvement occurred when participating in wellness programs. The dominant indirect benefit for the organization was employee weight loss leading to a decrease in absenteeism and direct benefits included decreases in medical claims and increases in return on investment. In general, factors such as rate of participation and health status changes were most influenced when a financial incentives was provided in the wellness program. The basis of providing a program with effective incentives resides from efforts made by the employer and their efforts to play a role on every level of the organization regarding planning, implementing, and strategizing the most optimal approach for creating changes for the employees' wellbeing and productivity, thus the organizations overall returns.^
Resumo:
By incorporating recently available remote sensing data, we investigated the mass balance for all individual tributary glacial basins of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. On the basis of the ice flow information derived from SAR interferometry and ICESat laser altimetry, we have determined the spatial configuration of eight tributary drainage basins of the Lambert-Amery glacial system. By combining the coherence information from SAR interferometry and the texture information from SAR and MODIS images, we have interpreted and refined the grounding line position. We calculated ice volume flux of each tributary glacial basin based on the ice velocity field derived from Radarsat three-pass interferometry together with ice thickness data interpolated from Australian and Russian airborne radio echo sounding (RES) surveys and inferred from ICESat laser altimetry data. Our analysis reveals that three tributary basins have a significant net positive imbalance, while five other subbasins are slightly positive or close to zero balance. Overall, in contrast to previous studies, we find that the grounded ice in Lambert Glacier-Amery Ice Shelf system has a positive mass imbalance of 22.9 ± 4.4 Gt/a. The net basal melting for the entire Amery Ice Shelf is estimated to be 27.0 ± 7.0 Gt/a. The melting rate decreases rapidly from the grounding zone to the ice shelf front. Significant basal refreezing is detected in the downstream section of the ice shelf. The mass balance estimates for both the grounded ice sheet and the ice shelf mass differ substantially from other recent estimates.
Resumo:
The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach.
Resumo:
It is well known that that there is an intrinsic link between the financial and energy sectors, which can be analyzed through their spillover effects, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility in both spot and futures markets. Financial derivatives, which are not only highly representative of the underlying indices but can also be traded on both the spot and futures markets, include Exchange Traded Funds (ETFs), which is a tradable spot index whose aim is to replicate the return of an underlying benchmark index. When ETF futures are not available to examine spillover effects, “generated regressors” may be used to construct both Financial ETF futures and Energy ETF futures. The purpose of the paper is to investigate the covolatility spillovers within and across the US energy and financial sectors in both spot and futures markets, by using “generated regressors” and a multivariate conditional volatility model, namely Diagonal BEKK. The daily data used are from 1998/12/23 to 2016/4/22. The data set is analyzed in its entirety, and also subdivided into three subset time periods. The empirical results show there is a significant relationship between the Financial ETF and Energy ETF in the spot and futures markets. Therefore, financial and energy ETFs are suitable for constructing a financial portfolio from an optimal risk management perspective, and also for dynamic hedging purposes.