911 resultados para Field assisted sintering technique
Influence of cassava starch content and sintering temperature on the alumina consolidation technique
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.
Resumo:
The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.
Resumo:
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.
Resumo:
The spark plasma sintering (SPS) technique, by using a compacting pressure of 50 MPa, was used to consolidate pre-reacted powders of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta (Bi-2223). The influence of the consolidation temperature, T-D, on the structural and electrical properties has been investigated and compared with those of a reference sample synthesized by the traditional solid-state reaction method and subjected to the same compacting pressure. From the X-ray diffraction patterns, performed in both powder and pellet samples, we have found that the dominant phase is the Bi-2223 in all samples but traces of the Bi2Sr2CaCu2O8+x (Bi-2212) were identified. Their relative density were similar to 85% of the theoretical density and the temperature dependence of the electrical resistivity, rho(T), indicated that increasing T-D results in samples with low oxygen content because the SPS is performed in vacuum. Features of the rho(T) data, as the occurrence of normal-state semiconductor-like behavior of rho(T) and the double resistive superconducting transition, are consistent with samples comprised of grains with shell-core morphology in which the shell is oxygen deficient. The SPS samples also exhibited superconducting critical current density at 77 K, J(c)(77K), between 2 and 10A/cm(2), values much smaller than similar to 22A/cm(2) measured in the reference sample. Reoxygenation of the SPS samples, post-annealed in air at different temperatures and times, was found to improve their microstructural and transport properties. Besides the suppression of the Bragg peaks belonging to the Bi-2212 phase, the superconducting properties of the post-annealed samples and particularly J(c)(77K) were comparable or better than those corresponding to the reference sample. Post-annealed samples at 750 degrees C for 5min exhibited J(c)(77K) similar to 130A/cm(2) even when uniaxially pressed at only 50 MPa. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768257]
Resumo:
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.
Resumo:
The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called â Ion Resonance Hypothesis â. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned âIon Resonance Hypothesisâ.
Resumo:
The excimer laser-assisted nonocclusive anastomosis (ELANA) technique enables large-caliber bypass revascularization without temporary occlusion of the parent artery.
Resumo:
OBJECT: Patients with complex craniocerebral pathophysiologies such as giant cerebral aneurysms, skull base tumors, and/or carotid artery occlusive disease are candidates for a revascularization procedure to augment or preserve cerebral blood flow. However, the brain is susceptible to ischemia, and therefore the excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed to overcome temporary occlusion. Harvesting autologous vessels of reasonable quality, which is necessary for this technique, may at times be problematic or impossible due to the underlying systemic vascular disease. The use of artificial vessels is therefore an alternative graft for revascularization. Note, however, that it is unknown to what degree these grafts are subject to occlusion using the ELANA anastomosis technique. Therefore, the authors studied the ELANA technique in combination with an expanded polytetrafluoroethylene (ePTFE) graft. METHODS: The experimental surgeries involved bypassing the abdominal aorta in the rabbit. Ten rabbits were subjected to operations representing 20 ePTFE graft-ELANA end-to-side anastomoses. Intraoperative blood flow, followup angiograms, and long-term histological characteristics were assessed 75, 125, and 180 days postoperatively. Angiography results proved long-term patency of ePTFE grafts in all animals at all time points studied. Data from the histological analysis showed minimal intimal reaction at the anastomosis site up to 180 days postoperatively. Endothelialization of the ePTFE graft was progressive over time. CONCLUSIONS: The ELANA technique in combination with the ePTFE graft seems to have favorable attributes for end-to-side anastomoses and may be suitable for bypass procedures.
Resumo:
Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.