979 resultados para Fiber muscle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This study was undertaken to test the hypothesis that diabetes and pregnancy detrimentally affect the normal function of urethral striated muscles in rats, providing a model for additional studies related to urinary incontinence. The aim of this study was to evaluate morphological alterations in the urethral striated muscles of diabetic pregnant rats. Materials and Methods: Twenty female Wistar rats were distributed into four experimental groups of five rats as follows: virgin, pregnant, diabetic virgin, and diabetic pregnant. Diabetes was induced using streptozotocin administration (40 mg/kg i.v.). The rats were lethally anesthetized, and the urethra and vagina were extracted as a unit. Cryostat sections (6 μm thick) were cut and stained with hematoxylin-eosin, and immunohistochemical procedures were performed and subjected to morphological and semi quantitative analysis. Results: The urethral striated muscle from the diabetic pregnant rats presented with the following variations: thinning and atrophy, disorganization and disruption associated with the colocalization of fast and slow fibers and a steady decrease in the proportion of fast vs slow fibers. Conclusion: Diabetes and pregnancy impair the urethral striated muscle and alter its fiber type distribution. © Copyright G. Marini et al., 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experiment evaluated the growth of breast and leg muscle fibers of domestic fowl raised in two enclosure sizes (SE: Small Enclosure, 1.125 m2/10 birds; LE: Large Enclosure, 5.25 m2/10 birds). In breast muscles, the number of fibers per area decreased over time and higher values were observed in broilers housed in SE compared to LE. The fiber size increased with age and was greater in LE than SE at 56 days of age, suggesting greater hypertrophic growth of fibers in breast muscle for broilers maintained in LE. In leg muscles, the muscle cross-sectional area was greater for broilers raised in LE than SE at 56 days of age and decreased from 42 to 56 days of age in broilers raised in SE, suggesting leg muscle atrophy in these birds. The Fast Glycolytic (FG), Fast Oxidative-Glycolytic (FOG) and Slow Oxidative (SO) fibers grew until 42 days of age in both enclosure sizes. The area of FOG fibers was greater in broilers raised in LE than those in SE at 28 and 56 days of age; in LE-raised broilers, the SO area was greater at 28, 42 and 56 days of age, suggesting that the muscles of broilers housed in LE are more oxidative. The BW gain was greater for broilers raised in LE than SE, whereas BW, feed intake and feed conversion were not influenced by enclosure size. Thus, the enclosure space affected hypertrophic growth and metabolic characteristics of breast and leg muscle fibers. © Asian Network for Scientific Information, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42. days, (F5) 5. days of fasting and 37. days of refeeding, and (F10) 10. days of fasting and 32. days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n = 14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10. days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5. days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A myotoxic phospholipase A2, named bothropstoxin II (BthTX-II), was isolated from the venom of the South American snake Bothrops jararacussu and the pathogenesis of myonecrosis induced by this toxin was studied in mice. BthTX-II induced a rapid increase in plasma creatine kinase levels. Histological and ultrastructural observations demonstrate that this toxin affects muscle fibers by first disrupting the integrity of plasma membrane, as delta lesions were the earliest morphological alteration and since the plasma membrane was interrupted or absent in many portions. In agreement with this hypothesis, BthTX-II released peroxidase entrapped in negatively charged multilamellar liposomes and behaved as an amphiphilic protein in charge shift electrophoresis, an indication that its mechanism of action might be based on the interaction and disorganization of plasma membrane phospholipids. Membrane damage was followed by a complex series of morphological alterations in intracellular structures, most of which are probably related to an increase in cytosolic calcium levels. Myofilaments became hypercontracted into dense clumps which alternated with cellular spaces devoid of myofibrillar material. Later on, myofilaments changed to a hyaline appearance with a more uniform distribution. Mitochondria were drastically affected, showing high amplitude swelling, vesiculation of cristae, formation of flocculent densities, and membrane disruption. By 24 hr, abundant polymorphonuclear leucocytes and macrophages were observed in the interstitial space as well as inside necrotic fibers. Muscle regeneration proceeded normally, as abundant myotubes and regenerating myofibers were observed 7 days after BthTX-II injection. By 28 days regenerating fibers had a diameter similar to that of adult muscle fibers, although they presented two distinctive features: central location of nuclei and some fiber splitting. This good regenerative response may be explained by the observation that BthTX-II does not affect blood vessels, nerves, or basal laminae. © 1991.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. J. Cell. Physiol. 9999: 1-12, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. METHOD: In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). RESULTS: The mean ages at disease onset were 42.0 +/- 15.9 and 7.3 +/- 3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (p<0.050). Moreover, a significantly higher frequency of major histocompatibility complex I (96.4% vs. 50.0%, p<0.001) compared with major histocompatibility complex II expression (14.3% vs. 53.6%, p = 0.004) was observed in juvenile dermatomyositis. Fiber damage (p = 0.006) and increased connective tissue (p<0.001) were significantly higher in adult dermatomyositis compared with the presence of perifascicular atrophy (p<0.001). The results of the histochemical and histological data did not correlate with the demographic data or with the clinical and laboratory features. CONCLUSION: The overexpression of major histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called finger-like processes and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered finger-like processes, thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and finger-like processes due to hypoactivity, potentially compromising force transmission and joint stability. Microsc. Res. Tech. 75:12921296, 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze the presence and distribution of total collagen, type I and type III collagen, elastic fibers, fibronectin, and versican in the endomysium of cricopharyngeus muscles from adults of various ages. The study was a cross-sectional analysis of human cricopharyngeus muscles. Twenty-seven muscles obtained from autopsies of men and women ranging in age from 28 to 92 years were analyzed with the Picrosirius method, oxidized Weigert resorcin-fuchsin, immunohistochemistry, and image analysis. Collagen had the highest density among the analyzed components. Elastic fibers surrounded each muscle cell; they were aligned longitudinally by their long axis and associated with traversing fibers, thereby forming a fiber network with embedded muscle cells. The fibronectin and versican contents varied widely among the specimens. We found no statistically significant differences between the proportion of extracellular matrix (ECM) components and factors such as gender and race. We conclude that the higher proportion of type I and type III collagen is compatible with the cricopharyngeus muscle's sphincteric behavior, and the arrangement of the elastic fibers may also contribute to the muscle's elasticity. We found no statistically significant correlation between the ECM components and age.