981 resultados para Few-body systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactions, enables the five-body resonant recombination rate to be calculated and measured. The position of the new observed recombination feature agrees with a recent theoretical prediction and supports the prediction of a family of universal cluster states at negative a that are tied to an Efimov trimer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. ^ In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. ^ In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research into hyperinsulinemic laminitis has progressed significantly in recent years with the use of the prolonged-euglycemic, hyperinsulinemic clamp (p-EHC). Previous investigations of laminitis pathophysiology have focused on digital vascular dysfunction, inflammation, altered glucose metabolism within the lamellae, and lamellar basement membrane breakdown by metalloproteinases. The etiopathogenesis of laminitis occurring in association with hyperinsulinemia is yet to be fully characterized, but it may not involve these mechanisms. Insulin stimulates cellular proliferation and can also affect other body systems, such as the insulin-like growth factor (IGF) system. Insulin-like growth factor-1 (IGF-1) is structurally homologous to insulin and, like insulin, binds with strong affinity to a specific tyrosine kinase receptor on the cell surface to produce its effects, which include promoting cell proliferation. Receptors for IGF-1 (IGF-1R) are present in the lamellar epidermis. An alternative theory for the pathogenesis of hyperinsulinemic laminitis is that uncontrolled cell proliferation, mediated through both the insulin receptor (InsR) and IGF-1R, leads to lengthening, weakening, and failure of the lamellae. An analysis of the proliferative activity of lamellar epidermal cells during the developmental and acute phases of hyperinsulinemic laminitis, and lamellar gene expression of the InsR and IGF-1R was undertaken.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emphysema is caused by exposure to cigarette smoking as well as alpha1-antitrypsin deficiency. It has been estimated to cost the National Health Service (NHS) in excess of £800 million per year in related health care costs. The challenges for Critical Care nurses are those associated with dynamic hyperinflation, Auto-PEEP, malnutrition and the weaning from invasive and non-invasive mechanical ventilation. In this paper we consider the impact of the pathophysiology of emphysema, its effects on other body systems as well as the impact acute exacerbations have when patients are admitted to the Intensive Care Unit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pathophysiology is a complex, though essential, component of all undergraduate nursing courses and there is an identified need for a text tailored specifically for the Australian and New Zealand student. The entrenched bio-medical terminology can often be difficult to relate to nursing practice. To overcome this, the authors have presented pathophysiology in an accessible manner appropriate to undergraduate students, providing a balance between science, clinical case material and pharmacology. This adaptation prioritises the diseases relevant to nursing students and presents them according to their prevalence and rate of incidence in Australia and New Zealand. This focused approach prepares students for the presentations they will experience in a clinical setting. Each body system is explored first by structure and function, then by alteration.This establishes the physiology prior to addressing the diseases relative to the system and allows the student to analyse and compare the normal versus altered state. A lifespan approach is incorporated in the Alterations chapters, as each chapter addresses childhood diseases through to the aged with respect to each body system. A new section on Contemporary Health Issues examines the effects of an aging population and lifestyle choices on the overall health of our society. These are explored through specific chapters on Stress; Genes and the Environment; Obesity and Diabetes; Cancer; Mental Illness and Indigenous health issues. Concept maps are used to assist students to understand the basic concepts of each chapter and are used as a foundation for more complex discussions. Clinical case studies are also included in each chapter to bring pathophysiology into practice. Each patient case study will highlight relevant symptoms of a given disease within a clinical setting. This is analysed with respect to the relevancy of each given symptom, their respective affect on body systems and the best course of pharmacological treatment. This forthcoming textbook is an adaptation of Understanding Pathophysiology 4e by Huether & McCance. It builds on the strengths of the US edition while tailoring it to the specific needs of Australia and New Zealand undergraduate nursing students. As such it is an invaluable text which will compliment your suite of Elsevier nursing titles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the past ten years, large-scale transcript analysis using microarrays has become a powerful tool to identify and predict functions for new genes. It allows simultaneous monitoring of the expression of thousands of genes and has become a routinely used tool in laboratories worldwide. Microarray analysis will, together with other functional genomics tools, take us closer to understanding the functions of all genes in genomes of living organisms. Flower development is a genetically regulated process which has mostly been studied in the traditional model species Arabidopsis thaliana, Antirrhinum majus and Petunia hybrida. The molecular mechanisms behind flower development in them are partly applicable in other plant systems. However, not all biological phenomena can be approached with just a few model systems. In order to understand and apply the knowledge to ecologically and economically important plants, other species also need to be studied. Sequencing of 17 000 ESTs from nine different cDNA libraries of the ornamental plant Gerbera hybrida made it possible to construct a cDNA microarray with 9000 probes. The probes of the microarray represent all different ESTs in the database. From the gerbera ESTs 20% were unique to gerbera while 373 were specific to the Asteraceae family of flowering plants. Gerbera has composite inflorescences with three different types of flowers that vary from each other morphologically. The marginal ray flowers are large, often pigmented and female, while the central disc flowers are smaller and more radially symmetrical perfect flowers. Intermediate trans flowers are similar to ray flowers but smaller in size. This feature together with the molecular tools applied to gerbera, make gerbera a unique system in comparison to the common model plants with only a single kind of flowers in their inflorescence. In the first part of this thesis, conditions for gerbera microarray analysis were optimised including experimental design, sample preparation and hybridization, as well as data analysis and verification. Moreover, in the first study, the flower and flower organ-specific genes were identified. After the reliability and reproducibility of the method were confirmed, the microarrays were utilized to investigate transcriptional differences between ray and disc flowers. This study revealed novel information about the morphological development as well as the transcriptional regulation of early stages of development in various flower types of gerbera. The most interesting finding was differential expression of MADS-box genes, suggesting the existence of flower type-specific regulatory complexes in the specification of different types of flowers. The gerbera microarray was further used to profile changes in expression during petal development. Gerbera ray flower petals are large, which makes them an ideal model to study organogenesis. Six different stages were compared and specifically analysed. Expression profiles of genes related to cell structure and growth implied that during stage two, cells divide, a process which is marked by expression of histones, cyclins and tubulins. Stage 4 was found to be a transition stage between cell division and expansion and by stage 6 cells had stopped division and instead underwent expansion. Interestingly, at the last analysed stage, stage 9, when cells did not grow any more, the highest number of upregulated genes was detected. The gerbera microarray is a fully-functioning tool for large-scale studies of flower development and correlation with real-time RT-PCR results show that it is also highly sensitive and reliable. Gene expression data presented here will be a source for gene expression mining or marker gene discovery in the future studies that will be performed in the Gerbera Laboratory. The publicly available data will also serve the plant research community world-wide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology for selection of static VAR compensator location based on static voltage stability analysis of power systems. The analysis presented here uses the L-index of load buses, which includes voltage stability information of a normal load flow and is in the range of 0 (no load of system) to 1 (voltage collapse). An approach has been presented to select a suitable size and location of static VAR compensator in an EHV network for system voltage stability improvement. The proposed approach has been tested under simulated conditions on a few power systems and the results for a sample radial network and a 24-node equivalent EHV power network of a practical system are presented for illustration purposes. © 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electric power systems are exposed to various contingencies. Network contingencies often contribute to over-loading of network branches, unsatisfactory voltages and also leading to problems of stability/voltage collapse. To maintain security of the systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. This paper presents an approach for selection of unified power flow controller (UPFC) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated using composite criteria based fuzzy logic for eliminating masking effect. The fuzzy approach, in addition to real power loadings and bus voltage violations, voltage stability indices at the load buses also used as the post-contingent quantities to evaluate the network contingency ranking. The selection of UPFC suitable locations uses the criteria on the basis of improved system security/stability. The proposed approach for selection of UPFC suitable locations has been tested under simulated conditions on a few power systems and the results for a 24-node real-life equivalent EHV power network and 39-node New England (modified) test system are presented for illustration purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three algorithms for reactive power optimization are proposed in this paper with three different objective functions. The objectives in the proposed algorithm are to minimize the sum of the squares of the voltage deviations of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (:3L2) algorithm, and also the objective of system real power loss (Ploss) minimization. The approach adopted is an iterative scheme with successive power flow analysis using decoupled technique and solution of the linear programming problem using upper bound optimization technique. Results obtained with all these objectives are compared. The analysis of these objective functions are presented to illustrate their advantages. It is observed comparing different objective functions it is possible to identify critical On Load Tap Changers (OLTCs) that should be made manual to avoid possible voltage instability due to their operation based on voltage improvement criteria under heavy load conditions. These algorithms have been tested under simulated conditions on few test systems. The results obtained on practical systems of 24-node equivalent EHV Indian power network, and for a 205 bus EHV system are presented for illustration purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a centralized integrated approach for: 1) enhancing the performance of an IEEE 802.11 infrastructure wireless local area network (WLAN), and 2) managing the access link that connects the WLAN to the Internet. Our approach, which is implemented on a standard Linux platform, and which we call ADvanced Wi-fi Internet Service EnhanceR (ADWISER), is an extension of our previous system WLAN Manager (WM). ADWISER addresses several infrastructure WLAN performance anomalies such as mixed-rate inefficiency, unfair medium sharing between simultaneous TCP uploads and downloads, and inefficient utilization of the Internet access bandwidth when Internet transfers compete with LAN-WLAN transfers, etc. The approach is via centralized queueing and scheduling, using a novel, configurable, cascaded packet queueing and scheduling architecture, with an adaptive service rate. In this paper, we describe the design of ADWISER and report results of extensive experimentation conducted on a hybrid testbed consisting of real end-systems and an emulated WLAN on Qualnet. We also present results from a physical testbed consisting of one access point (AP) and a few end-systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the entanglement in a chain of harmonic oscillators driven out of equilibrium by preparing the two sides of the system at different temperatures, and subsequently joining them together. The steady state is constructed explicitly and the logarithmic negativity is calculated between two adjacent segments of the chain. We find that, for low temperatures, the steady-state entanglement is a sum of contributions pertaining to left-and right-moving excitations emitted from the two reservoirs. In turn, the steady-state entanglement is a simple average of the Gibbs-state values and thus its scaling can be obtained from conformal field theory. A similar averaging behaviour is observed during the entire time evolution. As a particular case, we also discuss a local quench where both sides of the chain are initialized in their respective ground states.