980 resultados para Fetal Blood


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physiological examination of mice harboring a null allele at the aryl hydrocarbon (Ah) locus revealed that the encoded aryl hydrocarbon receptor plays a role in the resolution of fetal vascular structures during development. Although the aryl hydrocarbon receptor is more commonly studied for its role in regulating xenobiotic metabolism and dioxin toxicity, a developmental role of this protein is supported by the observation that Ah null mice display smaller livers, reduced fecundity, and decreased body weights. Upon investigating the liver phenotype, we found that the decrease in liver size is directly related to a reduction in hepatocyte size. We also found that smaller hepatocyte size is the result of massive portosystemic shunting in null animals. Colloidal carbon uptake and microsphere perfusion studies indicated that 56% of portal blood flow bypasses the liver sinusoids. Latex corrosion casts and angiography demonstrated that shunting is consistent with the existence of a patent ductus venosus in adult animals. Importantly, fetal vascular structures were also observed at other sites. Intravital microscopy demonstrated an immature sinusoidal architecture in the liver and persistent hyaloid arteries in the eyes of adult Ah null mice, whereas corrosion casting experiments described aberrations in kidney vascular patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological evidence has suggested that some pediatric leukemias may be initiated in utero and, for some pairs of identical twins with concordant leukemia, this possibility has been strongly endorsed by molecular studies of clonality. Direct evidence for a prenatal origin can only be derived by prospective or retrospective detection of leukemia-specific molecular abnormalities in fetal or newborn samples. We report a PCR-based method that has been developed to scrutinize neonatal blood spots (Guthrie cards) for the presence of numerically infrequent leukemic cells at birth in individuals who subsequently developed leukemia. We demonstrate that unique or clonotypic MLL-AF4 genomic fusion sequences are present and detectable in neonatal blood spots from individuals who were diagnosed with acute lymphoblastic leukemia at ages 5 months to 2 years and, therefore, have arisen during fetal hematopoiesis in utero. This result provides unequivocal evidence for a prenatal initiation of acute leukemia in young patients. The method should be applicable to other fusion genes in children with common subtypes of leukemia and will be of value in attempts to unravel the natural history and etiology of this major subtype of pediatric cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proline-rich γ-carboxyglutamic acid (Gla) proteins (PRGPs) 1 and 2 are the founding members of a family of vitamin K-dependent single-pass integral membrane proteins characterized by an extracellular amino terminal domain of approximately 45 amino acids that is rich in Gla. The intracellular carboxyl terminal region of these two proteins contains one or two copies of the sequence PPXY, a motif present in a variety of proteins involved in such diverse cellular functions as signal transduction, cell cycle progression, and protein turnover. In this report, we describe the cloning of the cDNAs for two additional human transmembrane Gla proteins (TMG) of 20–24 kDa named TMG3 and TMG4. These two proteins possess extracellular Gla domains with 13 or 9 potential Gla residues, respectively, followed by membrane-spanning hydrophobic regions and cytoplasmic carboxyl terminal regions that contain PPXY motifs. This emerging family of integral membrane Gla proteins includes proline-rich Gla protein (PRGP) 1, PRGP2, TMG3, and TMG4, all of which are characterized by broad and variable distribution in both fetal and adult tissues. Members of this family can be grouped into two subclasses on the basis of their gene organization and amino acid sequence. These observations suggest novel physiological functions for vitamin K beyond its known role in the biosynthesis of proteins involved in blood coagulation and bone development. The identification and characterization of these proteins may allow a more complete understanding of the teratogenic consequences of exposure in utero to vitamin K antagonists, such as warfarin-based anticoagulants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to isolate fetal nucleated red blood cells (NRBCs) from the maternal circulation makes possible prenatal genetic analysis without the need for diagnostic procedures that are invasive for the fetus. Such isolation requires antibodies specific to fetal NRBCs. To generate a panel of antibodies to antigens present on fetal NRBCs, a new type of nonimmune phage antibody library was generated in which multiple copies of antibody fragments are displayed on each phage. Antibody fragments specific for fetal NRBCs were isolated by extensive predepletion of the phage library on adult RBCs and white blood cells (WBCs) followed by positive selection and amplification on fetal liver erythroid cells. After two rounds of selection, 44% of the antibodies analyzed bound fetal NRBCs, with two-thirds of these showing no binding of WBCs. DNA fingerprint analysis revealed the presence of at least 16 unique antibodies. Antibody specificity was confirmed by flow cytometry, immunohistochemistry, and immunofluorescence of total fetal liver and adult RBCs and WBCs. Antibody profiling suggested the generation of antibodies to previously unknown fetal RBC antigens. We conclude that multivalent display of antibodies on phage leads to efficient selection of panels of specific antibodies to cell surface antigens. The antibodies generated to fetal RBC antigens may have clinical utility for isolating fetal NRBCs from maternal circulation for noninvasive prenatal genetic diagnosis. Some of the antibodies may also have possible therapeutic utility for erythroleukemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the usefulness of in vivo mode for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-1(59), a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-1(59) was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive to in vivo treatment with exogenous cytokines. Human interferon gamma expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoproteins expressing the Lutheran blood group antigens were isolated from human erythrocyte membranes and from human fetal liver. Amino acid sequence analyses allowed the design of redundant oligonucleotides that were used to generate a 459-bp, sequence-specific probe by PCR. A cDNA clone of 2400 bp was isolated from a human placental lambda gt 11 library and sequenced, and the deduced amino acid sequence was studied. The predicted mature protein is a type I membrane protein of 597 amino acids with five potential N-glycosylation sites. There are five disulfide-bonded, extracellular, immunoglobulin superfamily domains (two variable-region set and three constant-region set), a single hydrophobic, membrane-spanning domain, and a cytoplasmic domain of 59 residues. The overall structure is similar to that of the human tumor marker MUC 18 and the chicken neural adhesion molecule SC1. The extracellular domains and cytoplasmic domain contain consensus motifs for the binding of integrin and Src homology 3 domains, respectively, suggesting possible receptor and signal-transduction function. Immunostaining of human tissues demonstrated a wide distribution and provided evidence that the glycoprotein is under developmental control in liver and may also be regulated during differentiation in other tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary neuroendocrine cells are localized predominantly at airway branchpoints. Previous work showed that gastrin-releasing peptide (GRP), a major pulmonary bombesin-like peptide, occurred in neuroendocrine cells exclusively in branching human fetal airways. We now demonstrate that GRP and GRP receptor genes are expressed in fetal mouse lung as early as embryonic day 12 (E12), when lung buds are beginning to branch. By in situ hybridization, GRP receptor transcripts were at highest levels in mesenchymal cells at cleft regions of branching airways and blood vessels. To explore the possibility that bombesin-like peptides might play a role in branching morphogenesis, E12 lung buds were cultured for 48 hr in serum-free medium. In the presence of 0.10-10 microM bombesin, branching was significantly augmented as compared with control cultures, with a peak of 94% above control values at 1 microM (P < 0.005). The bombesin receptor antagonist [Leu13- psi(CH2NH)Leu14]bombesin alone (100 nM) had no effect on baseline branching but completely abolished bombesin-induced branching. A bombesin-related peptide, [Leu8]phyllolitorin also increased branching (65% above control values at 10 nM, P < 0.005). [Leu8]Phyllolitorin also significantly augmented thymidine incorporation in cultured lung buds. Fibronectin, which is abundant at branchpoints, induces GRP gene expression in undifferentiated cell lines. These observations suggest that BLPs secreted by pulmonary neuroendocrine cells may contribute to lung branching morphogenesis. Furthermore, components of branchpoints may induce pulmonary neuroendocrine cell differentiation as part of a positive feedback loop, which could account in part for the high prevalence of these cells at branchpoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background— Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes that persist into childhood. Methods and Results— Within a cohort of fetuses with growth restriction identified in fetal life and followed up into childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups, stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak velocities) and diastolic changes (increased E/E' ratio and E deceleration time). Children with FGR also had higher blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the severity of growth restriction. Conclusions— These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial effects on cardiac remodeling should be explored in children with FGR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal growth restriction (FGR) is characterized by the birth weight and body mass below the tenth percentile for gestational age. FGR is a major cause of perinatal morbidity and mortality and babies born with FGR are prone to develop cardiovascular diseases later in life. The underlying pathology of FGR is inadequate placental transfer of nutrients from mother to fetus, which can be caused by placental insufficiency. Hydrogen sulfide (H2S), a gaseous messenger is produced endogenously by cystathionine-lyase (Cth), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), which are present in human placenta. Recently, we demonstrated that the dysregulation of H2S/Cth pathway is associated with preeclampsia and blockade of CSE activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in H2S pathways promote FGR and H2S donor restores fetal growth in mice where CBS or CSE activity has been compromised. Western blotting and qPCR revealed that placental CBS expressions were significantly reduced in women with FGR. ELISA analysis showed reduced placental growth factor production (PlGF) from first trimester (8–12 weeks gestation) human placental explants following inhibition of CBS activity by aminooxyacetic acid (AOA). Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction. This was associated with reduced PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor treated mice. These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Fetal growth restriction (FGR), which causes perinatal morbidity and mortality, is characterized by birth weight and body mass being below 10th percentile for gestational age. FGR babies are prone to develop cardiovascular diseases later in life. Inadequate placental transfer of nutrients from mother to fetus due to placental insufficiency is considered the underlying cause of FGR. Recently, we demonstrated that blockade of cystathionine-γ-lyase (CSE) activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in cystathionine-β-synthase (CBS) / H2S pathway may promote FGR. METHODS: Placental CBS expressions were determined in women with FGR (n=9) and normal controls (n=14) by Western blotting and real-time qPCR. ELISA was used to determine angiogenic factors levels in plasma and first-trimester (8–12 weeks gestation) human placental explants. Time pregnant mice were treated with CBS inhibitor, aminooxyacetic acid (AOA). Mean arterial blood pressure (MBP), histological assessments of placenta and embryos were performed. RESULTS: Placental CBS expressions were significantly reduced in women with FGR. Inhibition of CBS activity by AOA reduced PlGF production from first-trimester human placental explants, Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction, which was associated with reduced placental PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor-treated animals. Furthermore, H2S donor GYY4137 treatment restored fetal growth in pregnant mice exposed to high level of sFlt-1. CONCLUSIONS: These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia opening up the therapeutic potentials of H2S therapy in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood flow assessment employing Doppler techniques is a useful procedure in pregnancy evaluation, as it may predict pregnancy disorders coursing with increased uterine vascular impedance, as pre-eclampsia. While the local causes are unknown, emphasis has been put on reactive oxygen species (ROS) excessive production. As NADPH oxidase (NOX) is a ROS generator, it is hypothesized that combining Doppler assessment with NOX activity might provide useful knowledge on placental bed disorders underlying mechanisms. A prospective longitudinal study was performed in 19 normal course, singleton pregnancies. Fetal aortic isthmus (AoI) and maternal uterine arteries (UtA) pulsatility index (PI) were recorded at two time points: 20-22 and 40-41 weeks, just before elective Cesarean section. In addition, placenta and placental bed biopsies were performed immediately after fetal extraction. NOX activity was evaluated using a dihydroethidium-based fluorescence method and associations to PI values were studied with Spearman correlations. A clustering of pregnancies coursing with higher and lower PI values was shown, which correlated strongly with placental bed NOX activity, but less consistently with placental tissue. The study provides evidence favoring that placental bed NOX activity parallels UtA PI enhancement and suggests that an excess in oxidation underlies the development of pregnancy disorders coursing with enhanced UtA impedance.