944 resultados para Femoral Head


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Posterior approaches to the hip joint were developed by Langenbeck and Kocher in the nineteenth century. Letournel created the term Kocher-Langenbeck approach which became one of the most important approaches to the hip joint. The further extension of this approach by digastric trochanteric osteotomy and subsequently by surgical hip dislocation enables visualization of the entire hip joint which allows complete evaluation of articular joint damage, quality of reduction and confirmation of extra-articular hardware. With the increasing incidence of acetabular fractures in the elderly there is a concomitant increase of complicating factors, such as multifragmentary posterior wall fractures, dome impaction, marginal impaction and femoral head damage. These factors are negative predictors and compromise a favorable outcome after acetabular surgery. With direct joint visualization these factors can be reliably recognized and corrected as adequately as possible. Surgical hip dislocation thus offers advantages in complex posterior wall, transverse and T-shaped fractures with or without posterior wall involvement. For these fracture types surgical hip dislocation represents a standard approach in our hands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sheep hips have a natural non-spherical femoral head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoro-acetabular impingement (FAI) during flexion can be created. We tested the hypotheses that macroscopic lesions of the articular cartilage and an increased Mankin score (MS) can be reproduced by an experimentally induced cam-type FAI in this ovine in vivo model. Furthermore, we hypothesized that the MS increases with longer ambulatory periods. Sixteen sheep underwent unilateral intertrochanteric varus osteotomy of the hip with the non-operated hip as a control. Four sheep were sacrificed after 14, 22, 30, and 38-weeks postoperatively. We evaluated macroscopic chondrolabral alterations, and recorded the MS, based on histochemical staining, for each ambulatory period. A significantly higher prevalence of macroscopic chondrolabral lesions was found in the impingement zone of the operated hips. The MS was significantly higher in the acetabular/femoral cartilage of the operated hips. Furthermore, these scores increased as the length of the ambulatory period increased. Cam-type FAI can be induced in an ovine in vivo model. Localized chondrolabral degeneration of the hip, similar to that seen in humans (Tannast et al., Clin Orthop Relat Res 2008; 466: 273-280; Beck et al., J Bone Joint Surg Br 2005; 87: 1012-1018), can be reproduced. This experimental sheep model can be used to study cam-type FAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Traumatic posterior hip dislocation in adults is generally understood to be the result of a high-energy trauma. Aside from reduced femoral antetorsion, morphologic risk factors for dislocation are unknown. We previously noticed that some hips with traumatic posterior dislocations had evidence of morphologic features of femoroacetabular impingement (FAI), therefore, we sought to evaluate that possibility more formally. QUESTIONS/PURPOSES We asked whether hips with a traumatic posterior hip dislocation present with (1) a cam-type deformity and/or (2) a retroverted acetabulum. METHODS We retrospectively compared the morphologic features of 53 consecutive hips (53 patients) after traumatic posterior hip dislocation with 85 normal hips (44 patients) based on AP pelvic and crosstable axial radiographs. We measured the axial and the lateral alpha angle for detection of a cam deformity and the crossover sign, ischial spine sign, posterior wall sign, retroversion index, and ratio of anterior to posterior acetabular coverage to describe the acetabular orientation. RESULTS Hips with traumatic posterior traumatic dislocation were more likely to have cam deformities than were normal hips, in that the hips with dislocation had increased axial and lateral alpha angles. Hips with posterior dislocation also were more likely to be retroverted; dislocated hips had a higher prevalence of a positive crossover sign, ischial spine sign, and posterior wall sign, and they had a higher retroversion index and increased ratio of anterior to posterior acetabular coverage. CONCLUSIONS Hips with posterior traumatic dislocation typically present with morphologic features of anterior FAI, including a cam-type deformity and retroverted acetabulum. An explanation for these findings could be that the early interaction between the aspherical femoral head and the prominent acetabular rim acts as a fulcrum, perhaps making these hips more susceptible to traumatic dislocation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Vigorous sporting activity during the growth years is associated with an increased risk of having a cam-type deformity develop. The underlying cause of this osseous deformity is unclear. One may speculate whether this is caused by reactive bone apposition in the region of the anterosuperior head-neck junction or whether sports activity alters the shape of and growth in the growth plate. If the latter is true, then one would expect athletes to show an abnormal shape of the capital growth plate (specifically, the epiphyseal extension) before and/or after physeal closure. QUESTIONS/PURPOSES We therefore raised three questions: (1) Do adolescent basketball players show abnormal epiphyseal extension? (2) Does the epiphyseal extension differ before and after physeal closure? (3) Is abnormal epiphyseal extension associated with high alpha angles? METHODS We performed a case-control comparative analysis of young (age range, 9-22 years) male elite basketball athletes with age-matched nonathletes, substratified by whether they had open or closed physes. We measured epiphyseal extension on radial-sequence MRI cuts throughout the cranial hemisphere from 9 o'clock (posterior) to 3 o'clock (anterior). Epiphyseal extension was correlated to alpha angle measurements at the same points. RESULTS Epiphyseal extension was increased in all positions in the athletes compared with the control group. On average, athletes showed epiphyseal extension of 0.67 to 0.83 versus 0.53 to 0.71 in control subjects. In the control group epiphyseal extension was increased at all measurement points in hips after physeal closure compared with before physeal closure. In contrast, the subgroup of athletes with a closed growth plate only had increased epiphyseal extension at the 3 o'clock position compared with the athletes with an open [corrected] growth plate (0.64-0.70). We observed a correlation between an alpha angle greater than 55° and greater epiphyseal extension in the anterosuperior femoral head quadrant: the corresponding Spearman r values were 0.387 (all hips) and 0.285 (alpha angle>55°) for the aggregate anterosuperior quadrant. CONCLUSIONS These findings suggest that a cam-type abnormality in athletes is a consequence of an alteration of the growth plate rather than reactive bone formation. High-level sports activity during growth may be a new and distinct risk factor for a cam-type deformity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The current treatment of painful hip dysplasia in the mature skeleton is based on acetabular reorientation. Reorientation procedures attempt to optimize the anatomic position of the hyaline cartilage of the femoral head and acetabulum in regard to mechanical loading. Because the Bernese periacetabular osteotomy is a versatile technique for acetabular reorientation, it is helpful to understand the approach and be familiar with the criteria for an optimal surgical correction. The femoral side bears stigmata of hip dysplasia that may require surgical correction. Improvement of the head-neck offset to avoid femoroacetabular impingement has become routine in many hips treated with periacetabular osteotomy. In addition, intertrochanteric osteotomies can help improve joint congruency and normalize the femoral neck orientation. Other new surgical techniques allow trimming or reducing a severely deformed head, performing a relative neck lengthening, and trimming or distalizing the greater trochanter.  An increasing number of studies have reported good long-term results after acetabular reorientation procedures, with expected joint preservation rates ranging from 80% to 90% at the 10-year follow-up and 60% to 70% at the 20-year follow-up. An ideal candidate is younger than 30 years, with no preoperative signs of osteoarthritis. Predicted joint preservation in these patients is approximately 90% at the 20-year follow-up. Recent evidence indicates that additional correction of an aspheric head may further improve results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Acetabular retroversion is associated with pincer-type femoroacetabular impingement and can lead to hip osteoarthritis. We report the ten-year results of a previously described patient cohort that had corrective periacetabular osteotomy for the treatment of symptomatic acetabular retroversion. METHODS Clinical and radiographic parameters were assessed preoperatively and at two and ten years postoperatively. A Kaplan-Meier survivorship analysis of the twenty-two patients (twenty-nine hips) with a mean follow-up (and standard deviation) of 11 ± 1 years (range, nine to twelve years) was performed. In addition, a univariate Cox regression analysis was done with conversion to total hip arthroplasty as the primary end point and progression of the osteoarthritis, a fair or poor result according to the Merle d'Aubigné score, or the need for revision surgery as the secondary end points. RESULTS The mean Merle d'Aubigné score improved significantly from 14 ± 1.4 points (range, 12 to 17 points) preoperatively to 16.9 ± 0.9 points (range, 15 to 18 points) at ten years (p < 0.001). There were also significant improvements with regard to hip flexion (p = 0.003), internal rotation (p = 0.003), and adduction (p = 0.002) compared with the preoperative status. No significant increase of the mean Tönnis osteoarthritis score was seen at ten years (p = 0.06). The cumulative ten-year survivorship, with conversion to a total hip arthroplasty as the primary end point, was 100%. The cumulative ten-year survivorship in achievement of one of the secondary end points was 71% (95% confidence interval, 54% to 88%). Predictors for poor outcome were the lack of femoral offset creation and overcorrection of the acetabular version resulting in excessive anteversion. CONCLUSIONS Anteverting periacetabular osteotomy for acetabular retroversion leads to favorable long-term results with preservation of the native hip at a mean of ten years. Overcorrection resulting in excessive anteversion of the hip and omitting concomitant offset creation of the femoral head-neck junction are associated with an unfavorable outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Acetabular rim trimming is indicated in pincer hips with an oversized lunate surface but could result in a critically decreased size of the lunate surface in pincer hips with acetabular malorientation. There is a lack of detailed three-dimensional anatomy of lunate surface in pincer hips. Therefore, we questioned how does (1) size and (2) shape of the lunate surface differ among hips with different types of pincer impingement? METHOD We retrospectively compared size and shape of the lunate surface between acetabular retroversion (48 hips), deep acetabulum (34 hips), protrusio acetabuli (seven hips), normal acetabuli (30 hips), and hip dysplasia (45 hips). Using magnetic resonance imaging (MRI) arthrography with radial slices we measured size in percentage of the femoral head coverage and shape using the outer (inner) center-edge angles and width of lunate surface. RESULTS Hips with retroversion had a decreased size and deep hips had normal size of the lunate surface. Both had a normal shape of the outer acetabular rim. Protrusio hips had an increased size and a prominent outer acetabular rim. In all three types of pincer hips the acetabular fossa was increased. CONCLUSION Size and shape of the lunate surface differs substantially among different types of pincer impingement. In contrast to hips with protrusio acetabuli, retroverted and deep hips do not have an increased size of the lunate surface. Acetabular rim trimming in retroverted and deep hips should be performed with caution. Based on our results, acetabular reorientation would theoretically be the treatment of choice in retroverted hips.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Femoroacetabular impingement (FAI) before or after Periacetabular Osteotomy (PAO) is surprisingly frequent and surgeons need to be aware of the risk preoperatively and be able to avoid it intraoperatively. In this paper we present a novel computer assisted planning and navigation system for PAO with impingement analysis and range of motion (ROM) optimization. Our system starts with a fully automatic detection of the acetabular rim, which allows for quantifying the acetabular morphology with parameters such as acetabular version, inclination and femoral head coverage ratio for a computer assisted diagnosis and planning. The planned situation was optimized with impingement simulation by balancing acetabuar coverage with ROM. Intra-operatively navigation was conducted until the optimized planning situation was achieved. Our experimental results demonstrated: 1) The fully automated acetabular rim detection was validated with accuracy 1.1 ± 0.7mm; 2) The optimized PAO planning improved ROM significantly compared to that without ROM optimization; 3) By comparing the pre-operatively planned situation and the intra-operatively achieved situation, sub-degree accuracy was achieved for all directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periacetabular osteotomy (PAO) is an effective approach for surgical treatment of hip dysplasia. The aim of PAO is to increase acetabular coverage of the femoral head and to reduce contact pressures by reorienting the acetabulum fragment after PAO. The success of PAO significantly depends on the surgeon’s experience. Previously, we have developed a computer-assisted planning and navigation system for PAO, which allows for not only quantifying the 3D hip morphology for a computer-assisted diagnosis of hip dysplasia but also a virtual PAO surgical planning and simulation. In this paper, based on this previously developed PAO planning and navigation system, we developed a 3D finite element (FE) model to investigate the optimal acetabulum reorientation after PAO. Our experimental results showed that an optimal position of the acetabulum can be achieved that maximizes contact area and at the same time minimizes peak contact pressure in pelvic and femoral cartilages. In conclusion, our computer-assisted planning and navigation system with FE modeling can be a promising tool to determine the optimal PAO planning strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Both acetabular undercoverage (hip dysplasia) and overcoverage (pincer-type femoroacetabular impingement) can result in hip osteoarthritis. In contrast to undercoverage, there is a lack of information on radiographic reference values for excessive acetabular coverage. Questions/purposes (1) How do common radiographic hip parameters differ in hips with a deficient or an excessive acetabulum in relation to a control group; and (2) what are the reference values determined from these data for acetabular under- and overcoverage? Methods We retrospectively compared 11 radiographic parameters describing the radiographic acetabular anatomy among hip dysplasia (26 hips undergoing periacetabular osteotomy), control hips (21 hips, requiring no rim trimming during surgical hip dislocation), hips with overcoverage (14 hips, requiring rim trimming during surgical hip dislocation), and hips with severe overcoverage (25 hips, defined as having acetabular protrusio). The hips were selected from a patient cohort of a total of 593 hips. Radiographic parameters were assessed with computerized methods on anteroposterior pelvic radiographs and corrected for neutral pelvic orientation with the help of a true lateral radiograph. Results All parameters except the crossover sign differed among the four study groups. From dysplasia through control and overcoverage, the lateral center-edge angle, acetabular arc, and anteroposterior/craniocaudal coverage increased. In contrast, the medial center-edge angle, extrusion/acetabular index, Sharp angle, and prevalence of the posterior wall sign decreased. The following reference values were found: lateral center-edge angle 23° to 33°, medial center-edge angle 35° to 44°, acetabular arc 61° to 65°, extrusion index 17% to 27%, acetabular index 3° to 13°, Sharp angle 38° to 42°, negative crossover sign, positive posterior wall sign, anterior femoral head coverage 15% to 26%, posterior femoral head coverage 36% to 47%, and craniocaudal coverage 70% to 83%. Conclusions These acetabular reference values define excessive and deficient coverage. They may be used for radiographic evaluation of symptomatic hips, may offer possible predictors for surgical outcomes, and serve to guide clinical decision-making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pelvic osteotomies improve containment of the femoral head in cases of developmental dysplasia of the hip or in femoroacetabular impingement due to acetabular retroversion. In the evolution of osteotomies, the Ganz Periacetabular Osteotomy (PAO) is among the complex reorientation osteotomies and allows for complete mobilization of the acetabulum without compromising the integrity of the pelvic ring. For the complex reorientation osteotomies, preoperative planning of the required acetabular correction is an important step, due to the need to comprehend the three-dimensional (3D) relationship between acetabulum and femur. Traditionally, planning was performed using conventional radiographs in different projections, reducing the 3D problem to a two-dimensional one. Known disturbance variables, mainly tilt and rotation of the pelvis make assessment by these means approximate at the most. The advent of modern enhanced computation skills and new imaging techniques gave room for more sophisticated means of preoperative planning. Apart from analysis of acetabular geometry on conventional x-rays by sophisticated software applications, more accurate assessment of coverage and congruency and thus amount of correction necessary can be performed on multiplanar CT images. With further evolution of computer-assisted orthopaedic surgery, especially the ability to generate 3D models from the CT data, examiners were enabled to simulate the in vivo situation in a virtual in vitro setting. Based on this ability, different techniques have been described. They basically all employ virtual definition of an acetabular fragment. Subsequently reorientation can be simulated using either 3D calculation of standard parameters of femoroacetabular morphology, or joint contact pressures, or a combination of both. Other techniques employ patient specific implants, templates or cutting guides to achieve the goal of safe periacetabular osteotomies. This chapter will give an overview of the available techniques for planning of periacetabular osteotomy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periacetabular Osteotomy (PAO) is a joint preserving surgical intervention intended to increase femoral head coverage and thereby to improve stability in young patients with hip dysplasia. Previously, we developed a CT-based, computer-assisted program for PAO diagnosis and planning, which allows for quantifying the 3D acetabular morphology with parameters such as acetabular version, inclination, lateral center edge (LCE) angle and femoral head coverage ratio (CO). In order to verify the hypothesis that our morphology-based planning strategy can improve biomechanical characteristics of dysplastic hips, we developed a 3D finite element model based on patient-specific geometry to predict cartilage contact stress change before and after morphology-based planning. Our experimental results demonstrated that the morphology-based planning strategy could reduce cartilage contact pressures and at the same time increase contact areas. In conclusion, our computer-assisted system is an efficient tool for PAO planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Cam-type femoroacetabular impingement (FAI) resulting from an abnormal nonspherical femoral head shape leads to chondrolabral damage and is considered a cause of early osteoarthritis. A previously developed experimental ovine FAI model induces a cam-type impingement that results in localized chondrolabral damage, replicating the patterns found in the human hip. Biochemical MRI modalities such as T2 and T2* may allow for evaluation of the cartilage biochemistry long before cartilage loss occurs and, for that reason, may be a worthwhile avenue of inquiry. QUESTIONS/PURPOSES We asked: (1) Does the histological grading of degenerated cartilage correlate with T2 or T2* values in this ovine FAI model? (2) How accurately can zones of degenerated cartilage be predicted with T2 or T2* MRI in this model? METHODS A cam-type FAI was induced in eight Swiss alpine sheep by performing a closing wedge intertrochanteric varus osteotomy. After ambulation of 10 to 14 weeks, the sheep were euthanized and a 3-T MRI of the hip was performed. T2 and T2* values were measured at six locations on the acetabulum and compared with the histological damage pattern using the Mankin score. This is an established histological scoring system to quantify cartilage degeneration. Both T2 and T2* values are determined by cartilage water content and its collagen fiber network. Of those, the T2* mapping is a more modern sequence with technical advantages (eg, shorter acquisition time). Correlation of the Mankin score and the T2 and T2* values, respectively, was evaluated using the Spearman's rank correlation coefficient. We used a hierarchical cluster analysis to calculate the positive and negative predictive values of T2 and T2* to predict advanced cartilage degeneration (Mankin ≥ 3). RESULTS We found a negative correlation between the Mankin score and both the T2 (p < 0.001, r = -0.79) and T2* values (p < 0.001, r = -0.90). For the T2 MRI technique, we found a positive predictive value of 100% (95% confidence interval [CI], 79%-100%) and a negative predictive value of 84% (95% CI, 67%-95%). For the T2* technique, we found a positive predictive value of 100% (95% CI, 79%-100%) and a negative predictive value of 94% (95% CI, 79%-99%). CONCLUSIONS T2 and T2* MRI modalities can reliably detect early cartilage degeneration in the experimental ovine FAI model. CLINICAL RELEVANCE T2 and T2* MRI modalities have the potential to allow for monitoring the natural course of osteoarthrosis noninvasively and to evaluate the results of surgical treatments targeted to joint preservation.