895 resultados para Fat intake
Resumo:
BackgroundEvidence is emerging that highlights the far-reaching consequences of a high-fat diet (HFD) on kidney morphology and function disorders.MethodsThe present study was performed on 3-, 5-, 7- and 9-week-old HFD female rats compared with the appropriate gender and age-matched animals. We evaluated the kidney expression of angiotensin type II receptor and fibrotic and epithelial-to-mesenchymal transition (EMT) markers, by immunoblotting and immunohistochemical and histological techniques, in parallel with kidney function.ResultsIn the current study, the time-course HFD-treated group showed, by immunoblotting and immunohistochemical analysis, an early time-course increase in the expression of transforming growth factor β-1 (TGFβ-1) in the entire kidney of HFD-treated rats, compared with that observed in the control group. Simultaneously, the study shows a transient increase in the expression of ZEB2 in the HFD whole kidney accompanied by a fall in the E-cadherin expression and increased collagen and fibronectin deposition. A pronounced decrease in fractional urinary sodium excretion was also demonstrated in the long-term HFD-treated rats. The decreased FENa + was accompanied by a fall in FEPNa + and FEPP Na +, which occurred in association with significantly decreased CCr and, certainly on the sodium-filtered load. The reduction in the glomerular filtration rate (GFR) occurred in parallel to proteinuria and glomerular desmin overexpression.ConclusionsThe results of the current study suggest that podocyte injury in parallel with observed proteinuria and evidence of EMT transformation are associated with long-term loss of kidney function and renal sodium and water retention. © 2013 The Author. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
The present study aimed to investigate the relationships between macronutrient intake and serum lipid profile in adolescents from eight European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) cross-sectional study (2006–7), and to assess the role of body fat-related variables in these associations. Weight, height, waist circumference, skinfold thicknesses, total choles- terol, HDL-cholesterol (HDL-C), LDL-cholesterol, TAG, apoB and apoA1 were measured in 454 adolescents (44 % boys) aged 12·5–17·5 years. Macronutrient intake (g/4180 kJ per d (1000 kcal per d)) was assessed using two non-consecutive 24 h dietary recalls. Associations were evaluated by multi-level analysis and adjusted for sex, age, maternal education, centre, sum of four skinfolds, moderate-to-vigorous.
Resumo:
Purpose: To determine whether a significant relationship exists between fat mass (FM) development and physical activity (PA) and/or sugar-sweetened drink (SD) consumption in healthy boys and girls aged 8-19 yr. Methods: A total of 105 males and 103 females were assessed during childhood and adolescence for a maximum of 7 yr and a median of 5 yr. Height was measured biannually. Fat-free mass (FFM) and FM were assessed annually by dual x-ray absorptiometry (DXA). PA was evaluated two to three times annually using the PAQ-C/A. Energy intake and SD were assessed using a 24-h dietary intake questionnaire also completed two to three times per year. Years from peak height velocity were used as a biological maturity age indicator. Multilevel random effects models were used to test the relationship. Results: When controlling for maturation, FFM, and energy intake adjusted for SD, PA level was negatively related to FM development in males (P < 0.05) but not in females (P > 0.05). In contrast, there was no relationship between SD and FM development of males or females (P > 0.05). There was also no interaction effect between SD and PA (P > 0.05) with FM development. Conclusion: This finding tends support to the idea that increasing PA in male youths aids in the control of FM development. Models employed showed no relationship between SD and FM in either gender.
Resumo:
Peer reviewed
Resumo:
We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor.
Resumo:
Objective: To assess the effect of graded increases in exercised-induced energy expenditure (EE) on appetite, energy intake (EI), total daily EE and body weight in men living in their normal environment and consuming their usual diets. Design: Within-subject, repeated measures design. Six men (mean (s.d.) age 31.0 (5.0) y; weight 75.1 (15.96) kg; height 1.79 (0.10) m; body mass index (BMI) 23.3(2.4) kg/m2), were each studied three times during a 9 day protocol, corresponding to prescriptions of no exercise, (control) (Nex; 0 MJ/day), medium exercise level (Mex; ~1.6 MJ/day) and high exercise level (Hex; ~3.2 MJ/day). On days 1-2 subjects were given a medium fat (MF) maintenance diet (1.6 ´ resting metabolic rate (RMR)). Measurements: On days 3-9 subjects self-recorded dietary intake using a food diary and self-weighed intake. EE was assessed by continual heart rate monitoring, using the modified FLEX method. Subjects' HR (heart rate) was individually calibrated against submaximal VO2 during incremental exercise tests at the beginning and end of each 9 day study period. Respiratory exchange was measured by indirect calorimetry. Subjects completed hourly hunger ratings during waking hours to record subjective sensations of hunger and appetite. Body weight was measured daily. Results: EE amounted to 11.7, 12.9 and 16.8 MJ/day (F(2,10)=48.26; P<0.001 (s.e.d=0.55)) on the Nex, Mex and Hex treatments, respectively. The corresponding values for EI were 11.6, 11.8 and 11.8 MJ/day (F(2,10)=0.10; P=0.910 (s.e.d.=0.10)), respectively. There were no treatment effects on hunger, appetite or body weight, but there was evidence of weight loss on the Hex treatment. Conclusion: Increasing EE did not lead to compensation of EI over 7 days. However, total daily EE tended to decrease over time on the two exercise treatments. Lean men appear able to tolerate a considerable negative energy balance, induced by exercise, over 7 days without invoking compensatory increases in EI.
Resumo:
The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.
Resumo:
Summary There are four interactions to consider between energy intake (EI) and energy expenditure (EE) in the development and treatment of obesity. (1) Does sedentariness alter levels of EI or subsequent EE? and (2) Do high levels of EI alter physical activity or exercise? (3) Do exercise-induced increases in EE drive EI upwards and undermine dietary approaches to weight management and (4) Do low levels of EI elevate or decrease EE? There is little evidence that sedentariness alters levels of EI. This lack of cross-talk between altered EE and EI appears to promote a positive EB. Lifestyle studies also suggest that a sedentary routine actually offers the opportunity for over-consumption. Substantive changes in non exercise activity thermogenesis are feasible, but not clearly demonstrated. Cross talk between elevated EE and EI is initially too weak and takes too long to activate, to seriously threaten dietary approaches to weight management. It appears that substantial fat loss is possible before intake begins to track a sustained elevation of EE. There is more evidence that low levels of EI does lower physical activity levels, in relatively lean men under conditions of acute or prolonged semi-starvation and in dieting obese subjects. During altered EB there are a number of small but significant changes in the components of EE, including (i) sleeping and basal metabolic rate, (ii) energy cost of weight change alters as weight is gained or lost, (iii) exercise efficiency, (iv) energy cost of weight bearing activities, (v) during substantive overfeeding diet composition (fat versus carbohydrate) will influence the energy cost of nutrient storage by ~ 15%. The responses (i-v) above are all “obligatory” responses. Altered EB can also stimulate facultative behavioural responses, as a consequence of cross-talk between EI and EE. Altered EB will lead to changes in the mode duration and intensity of physical activities. Feeding behaviour can also change. The degree of inter-individual variability in these responses will define the scope within which various mechanisms of EB compensation can operate. The relative importance of “obligatory” versus facultative, behavioural responses -as components of EB control- need to be defined.
Resumo:
The purpose was to determine intake of phytoestrogens in a sample of older Australian women, and to investigate associated lifestyle factors. Subjects were an age-stratified sample of 511 women aged 40-80 y, randomly selected from the electoral roll and participating in the Longitudinal Assessment of Ageing in Women at the Royal Brisbane and Women’s Hospital. A cross-sectional study was conducted to assess isoflavone and lignan intake over the past month from food and supplements using a 112-item phytoestrogen frequency questionnaire. Data were also collected on nutrient intakes, physical activity, smoking, alcohol, non-prescription supplements, hormone therapy, education and occupation. Logistic regression was used to evaluate associations between demographic and lifestyle variables and soy/linseed consumption while controlling for age. Isoflavone intakes were significantly higher in the younger compared to older age groups (p<0.001); there were no age-related differences in lignan intake. Forty-five percent of women consumed at least one serve of a soy and/or linseed item and were defined as a soy/linseed consumer. Median (range) intakes by consumers for isoflavones and lignans (3.9 (0-172) mg/d and 2.4 (0.1-33) mg/d) were higher than intakes by non-consumers (0.004 (0-2.6) mg/d and 1.57 (0.44-4.7) mg/d), respectively (p<0.001). Consumers had higher intakes of dietary fibre (p=0.003), energy (p=0.04) and polyunsaturated fat (p=0.004), and higher levels of physical activity (p=0.006), socio-economic position (p<0.001), education (p<0.001) and supplement use (p<0.001). Women who consumed soy or linseed foods differed in lifestyle and demographic characteristics suggesting these factors should be considered when investigating associations with chronic disease outcomes.
Resumo:
It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.
Resumo:
Nutrition interventions in the form of both self-management education and individualised diet therapy are considered essential for the long-term management of type 2 diabetes mellitus (T2DM). The measurement of diet is essential to inform, support and evaluate nutrition interventions in the management of T2DM. Barriers inherent within health care settings and systems limit ongoing access to personnel and resources, while traditional prospective methods of assessing diet are burdensome for the individual and often result in changes in typical intake to facilitate recording. This thesis investigated the inclusion of information and communication technologies (ICT) to overcome limitations to current approaches in the nutritional management of T2DM, in particular the development, trial and evaluation of the Nutricam dietary assessment method (NuDAM) consisting of a mobile phone photo/voice application to assess nutrient intake in a free-living environment with older adults with T2DM. Study 1: Effectiveness of an automated telephone system in promoting change in dietary intake among adults with T2DM The effectiveness of an automated telephone system, Telephone-Linked Care (TLC) Diabetes, designed to deliver self-management education was evaluated in terms of promoting dietary change in adults with T2DM and sub-optimal glycaemic control. In this secondary data analysis independent of the larger randomised controlled trial, complete data was available for 95 adults (59 male; mean age(±SD)=56.8±8.1 years; mean(±SD)BMI=34.2±7.0kg/m2). The treatment effect showed a reduction in total fat of 1.4% and saturated fat of 0.9% energy intake, body weight of 0.7 kg and waist circumference of 2.0 cm. In addition, a significant increase in the nutrition self-efficacy score of 1.3 (p<0.05) was observed in the TLC group compared to the control group. The modest trends observed in this study indicate that the TLC Diabetes system does support the adoption of positive nutrition behaviours as a result of diabetes self-management education, however caution must be applied in the interpretation of results due to the inherent limitations of the dietary assessment method used. The decision to use a close-list FFQ with known bias may have influenced the accuracy of reporting dietary intake in this instance. This study provided an example of the methodological challenges experienced with measuring changes in absolute diet using a FFQ, and reaffirmed the need for novel prospective assessment methods capable of capturing natural variance in usual intakes. Study 2: The development and trial of NuDAM recording protocol The feasibility of the Nutricam mobile phone photo/voice dietary record was evaluated in 10 adults with T2DM (6 Male; age=64.7±3.8 years; BMI=33.9±7.0 kg/m2). Intake was recorded over a 3-day period using both Nutricam and a written estimated food record (EFR). Compared to the EFR, the Nutricam device was found to be acceptable among subjects, however, energy intake was under-recorded using Nutricam (-0.6±0.8 MJ/day; p<0.05). Beverages and snacks were the items most frequently not recorded using Nutricam; however forgotten meals contributed to the greatest difference in energy intake between records. In addition, the quality of dietary data recorded using Nutricam was unacceptable for just under one-third of entries. It was concluded that an additional mechanism was necessary to complement dietary information collected via Nutricam. Modifications to the method were made to allow for clarification of Nutricam entries and probing forgotten foods during a brief phone call to the subject the following morning. The revised recording protocol was evaluated in Study 4. Study 3: The development and trial of the NuDAM analysis protocol Part A explored the effect of the type of portion size estimation aid (PSEA) on the error associated with quantifying four portions of 15 single foods items contained in photographs. Seventeen dietetic students (1 male; age=24.7±9.1 years; BMI=21.1±1.9 kg/m2) estimated all food portions on two occasions: without aids and with aids (food models or reference food photographs). Overall, the use of a PSEA significantly reduced mean (±SD) group error between estimates compared to no aid (-2.5±11.5% vs. 19.0±28.8%; p<0.05). The type of PSEA (i.e. food models vs. reference food photograph) did not have a notable effect on the group estimation error (-6.7±14.9% vs. 1.4±5.9%, respectively; p=0.321). This exploratory study provided evidence that the use of aids in general, rather than the type, was more effective in reducing estimation error. Findings guided the development of the Dietary Estimation and Assessment Tool (DEAT) for use in the analysis of the Nutricam dietary record. Part B evaluated the effect of the DEAT on the error associated with the quantification of two 3-day Nutricam dietary records in a sample of 29 dietetic students (2 males; age=23.3±5.1 years; BMI=20.6±1.9 kg/m2). Subjects were randomised into two groups: Group A and Group B. For Record 1, the use of the DEAT (Group A) resulted in a smaller error compared to estimations made without the tool (Group B) (17.7±15.8%/day vs. 34.0±22.6%/day, p=0.331; respectively). In comparison, all subjects used the DEAT to estimate Record 2, with resultant error similar between Group A and B (21.2±19.2%/day vs. 25.8±13.6%/day; p=0.377 respectively). In general, the moderate estimation error associated with quantifying food items did not translate into clinically significant differences in the nutrient profile of the Nutricam dietary records, only amorphous foods were notably over-estimated in energy content without the use of the DEAT (57kJ/day vs. 274kJ/day; p<0.001). A large proportion (89.6%) of the group found the DEAT helpful when quantifying food items contained in the Nutricam dietary records. The use of the DEAT reduced quantification error, minimising any potential effect on the estimation of energy and macronutrient intake. Study 4: Evaluation of the NuDAM The accuracy and inter-rater reliability of the NuDAM to assess energy and macronutrient intake was evaluated in a sample of 10 adults (6 males; age=61.2±6.9 years; BMI=31.0±4.5 kg/m2). Intake recorded using both the NuDAM and a weighed food record (WFR) was coded by three dietitians and compared with an objective measure of total energy expenditure (TEE) obtained using the doubly labelled water technique. At the group level, energy intake (EI) was under-reported to a similar extent using both methods, with the ratio of EI:TEE was 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. At the individual level, four subjects reported implausible levels of energy intake using the WFR method, compared to three using the NuDAM. Overall, moderate to high correlation coefficients (r=0.57-0.85) were found across energy and macronutrients except fat (r=0.24) between the two dietary measures. High agreement was observed between dietitians for estimates of energy and macronutrient derived for both the NuDAM (ICC=0.77-0.99; p<0.001) and WFR (ICC=0.82-0.99; p<0.001). All subjects preferred using the NuDAM over the WFR to record intake and were willing to use the novel method again over longer recording periods. This research program explored two novel approaches which utilised distinct technologies to aid in the nutritional management of adults with T2DM. In particular, this thesis makes a significant contribution to the evidence base surrounding the use of PhRs through the development, trial and evaluation of a novel mobile phone photo/voice dietary record. The NuDAM is an extremely promising advancement in the nutritional management of individuals with diabetes and other chronic conditions. Future applications lie in integrating the NuDAM with other technologies to facilitate practice across the remaining stages of the nutrition care process.