973 resultados para Farming systems
Resumo:
From 2003-2006, an EU network project ‘Sustaining Animal Health and Food Safety in Organic Farming' (SAFO), was carried out with 26 partners from 20 EU-countries and 4 related partners from 4 candidate or new member states. The focus was the integration of animal health and welfare issues in organic farming with food safety aspects. Four very consistent conclusions became apparent: 1) The climatic, physical and socio-economic conditions vary considerably throughout Europe, leading to different livestock farming systems. This limits the possibility for technology transfer between regions, and creates several challenges for a harmonised regulation, 2) Implementing organic standards at farm level does not always ensure that animal health and welfare reach the high ideals of the organic principles, 3) To overcome these deficiencies, organic farmers and farmer organisations need to take ownership of organic values and, 4) In all participating countries, a strong need for training of farmers and in particular veterinarians in animal health promotion and organic principles was identified. The article presents a summary of papers presented at the five SAFO workshops.
Resumo:
Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits.
Resumo:
The present study aimed to identify Eimeria species in young and adult sheep raised under intensive and / or semi-intensive systems of a herd from Umuarama city, Parana State, Brazil using the traditional diagnostic methods and to correlate the infection level/types of infection in the different age/system in this herd. Fecal samples were collected from the rectum of 210 sheep and were subjected to laboratory analysis to differentiate the species. Furthermore, animals were observed to determine the occurrences of the clinical or subclinical forms of eimeriosis. Out of the 210 collected fecal samples, 147 (70%) were positive for Eimeria oocysts, and 101 (47.86%) belonged to young animals that were raised under intensive and / or semi-intensive farming systems. Oocysts from 9 species of Eimeria parasites were identified in the sheep at the following prevalence rates: E. crandallis, 50.0%; E. parva, 21.6%; E. faurei, 8.1%; E. ahsata, 8.1%; E. intricata, 5.4%; E. granulosa, 2.7%; E. ovinoidalis, 2.0%; E. ovina, 1.3%; and E. bakuensis, 0.6%. There were no differences regarding the more frequent Eimeria species among the different ages of animals or between the different farming management systems. Based on these data, E. crandallis was the most prevalent, followed by E. parva and E. faurei species, regardless of the age. Higher parasitism was diagnosed in the young animals that were raised in a confinement regime, and the disease found in the herd was classified as subclinical. Further studies should be conducted in this herd, to verify if the eimeriosis subclinical can cause damage especially in young animals with a high level of infection.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of the PhD research was the identification of new strategies of farming and processing, with the aim to improve the nutritional and technological characteristics of poultry meat. Part of the PhD research was focused on evaluation of alternative farming systems, with the aim to increase animal welfare and to improve the meat quality and sensorial characteristics in broiler chickens. It was also assessed the use of innovative ingredients for marination of poultry meat (sodium bicarbonate and natural antioxidants) The research was developed by studying the following aspects: - Meat quality characteristics, oxidative stability and sensorial traits of chicken meat obtained from two different farming systems: free range vs conventional; - Meat quality traits of frozen chicken breast pre-salted using increasing concentrations of sodium chloride; - Use of sodium bicarbonate in comparison with sodium trypolyphosphate for marination of broiler breast meat and phase; - Marination with thyme and orange essential oils mixture to improve chicken meat quality traits, susceptibility to lipid oxidation and sensory traits. The following meat quality traits analyseswere performed: Colour, pH, water holding capacity by conventional (gravimetric methods, pressure application, centrifugation and cooking) and innovative methods (low-field NMR and DSC analysis) ability to absorb marinade soloutions, texture (shear force using different probes and texture profile analysis), proximate analysis (moisture, proteins, lipids, ash content, collagen, fatty acid), susceptibility to lipid oxidation (determinations of reactive substances with thiobarbituric acid and peroxide value), sensorial analysis (triangle test and consumer test).
Resumo:
It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.
Resumo:
The challenge to properly feed a world population of 9.2 billion by 2050, that must be achieved on essentially currently cropped area, requires that food production be increased by 70%. This large increase can only be achieved by combinations of greater crop yields and more intensive cropping adapted to local conditions and availability of inputs. Farming systems are dynamic and continuously adapt to changing ecological, environmental and social conditions, while achieving greater production and resource-use efficiency by application of science and technology. This article argues that the solution to feed and green the world in 2050 is to support this evolution more strongly by providing farmers with necessary information, inputs, and recognition. There is no revolutionary alternative. Proposals to transform agriculture to low-input and organic systems would, because of low productiv- ity, exacerbate the challenge if applied in small part, and ensure failure if applied more widely. The challenge is, however, great. Irrigation, necessary to increase cropping intensity in many areas cannot be extended much more widely than at present, and it is uncertain if the current rate of crop yield increase can be maintained. Society needs greater recognition of the food-supply problem and must increase funding and support for agricultural research while it attends to issues of food waste and over consumption that can make valuable reductions to food demand from agriculture
Resumo:
Smallholder farming systems in Papua New Guinea are characterised by an integrated set of cash cropping and subsistence food cropping activities. In the Highlands provinces, the subsistence food crop sub-system is dominated by sweet potato production. Coffee dominates the cash cropping sub-system, but a limited number of food crops are also grown for cash sale. The dynamics between sub-systems can influence the scope for complementarity between, and technical efficiency of, their operations, especially in light of the seasonality of demand for household labour and management inputs within the farming system. A crucial element of these dynamic processes is diversification into commercial agricultural production, which can influence factor productivity and the efficiency of crop production where smallholders maintain a strong production base in subsistence foods. In this study we use survey data from households engaged in coffee and food crop production in the Benabena district of Eastern Highlands Province to derive technical efficiency indices for each household over two years. A stochastic input distance function approach is used to establish whether diversification economies exist and whether specialisation in coffee, subsistence food or cash food production significantly influences technical efficiency on the sampled smallholdings. Diversification economics are weakly evident between subsistence food production and both coffee and cash food production, but diseconomies of diversification are discerned between coffee and cash food production. A number of factors are tested for their effects on technical efficiency. Significant technical efficiency gains are made from diversification among broad cropping enterprises.
Resumo:
Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.
Resumo:
The rise in population growth, as well as nutrient mining, has contributed to low agricultural productivity in Sub-Saharan Africa (SSA). A plethora of technologies to boost agricultural production have been developed but the dissemination of these agricultural innovations and subsequent uptake by smallholder farmers has remained a challenge. Scientists and philanthropists have adopted the Integrated Soil Fertility Management (ISFM) paradigm as a means to promote sustainable intensification of African farming systems. This comparative study aimed: 1) To assess the efficacy of Agricultural Knowledge and Innovation Systems (AKIS) in East (Kenya) and West (Ghana) Africa in the communication and dissemination of ISFM (Study I); 2) To investigate how specifically soil quality, and more broadly socio-economic status and institutional factors, influence farmer adoption of ISFM (Study II); and 3) To assess the effect of ISFM on maize yield and total household income of smallholder farmers (Study III). To address these aims, a mixed methodology approach was employed for study I. AKIS actors were subjected to social network analysis methods and in-depth interviews. Structured questionnaires were administered to 285 farming households in Tamale and 300 households in Kakamega selected using a stratified random sampling approach. There was a positive relationship between complete ISFM awareness among farmers and weak knowledge ties to both formal and informal actors at both research locations. The Kakamega AKIS revealed a relationship between complete ISFM awareness among farmers and them having strong knowledge ties to formal actors implying that further integration of formal actors with farmers’ local knowledge is crucial for the agricultural development progress. The structured questionnaire was also utilized to answer the query pertaining to study II. Soil samples (0-20 cm depth) were drawn from 322 (Tamale, Ghana) and 459 (Kakamega, Kenya) maize plots and analysed non-destructively for various soil fertility indicators. Ordinal regression modeling was applied to assess the cumulative adoption of ISFM. According to model estimates, soil carbon seemed to preclude farmers from intensifying input use in Tamale, whereas in Kakamega it spurred complete adoption. This varied response by farmers to soil quality conditions is multifaceted. From the Tamale perspective, it is consistent with farmers’ tendency to judiciously allocate scarce resources. Viewed from the Kakamega perspective, it points to a need for farmers here to intensify agricultural production in order to foster food security. In Kakamega, farmers with more acidic soils were more likely to adopt ISFM. Other household and farm-level factors necessary for ISFM adoption included off-farm income, livestock ownership, farmer associations, and market inter-linkages. Finally, in study III a counterfactual model was used to calculate the difference in outcomes (yield and household income) of the treatment (ISFM adoption) in order to estimate causal effects of ISFM adoption. Adoption of ISFM contributed to a yield increase of 16% in both Tamale and Kakamega. The innovation affected total household income only in Tamale, where ISFM adopters had an income gain of 20%. This may be attributable to the different policy contexts under which the two sets of farmers operate. The main recommendations underscored the need to: (1) improve the functioning of AKIS, (2) enhance farmer access to hybrid maize seed and credit, (3) and conduct additional multi-locational studies as farmers operate under varying contexts.
Resumo:
Foraging strategies and diet selection play an essential role in individual survival and reproductive success. The study of feeding ecology becomes crucial when it concerns endangered species such as the Little Bustard (Tetrax tetrax), whose populations are suffering strong declines as a consequence of agricultural intensification. Despite the fact that several populations are overwintering in areas affected by agricultural transformation, nothing is known about how feeding behavior responds to these changes. We studied for the first time the winter diet composition of the Little Bustard in Spain and compared it between areas with two different farming systems: dry and irrigated farmland. Diet was studied through the micro-histological analysis of 357 droppings collected in 16 locations across the wintering range of the Little Bustard in Spain. Up to 62 plant species were identified. Most consumed species were cultivated legumes (46.7%) and dicotyledon weeds (45.6%), while monocotyledons were scarcely consumed (7.7%). Diet composition differed significantly between dry and irrigated farmland areas. In irrigated areas, diet was mainly composed of legumes, in particular alfalfa (Medicago sativa). In contrast, in dry farmland areas diet was more diverse, composed mainly of weeds (Compositae, Papaveraceae, and Cruciferae) and also cultivated legumes, particularly vetch (Vicia sativa). These results suggest that legume crops could be an effective measure to improve habitat quality in areas with scarce food resources. However, in the case of irrigated areas, the strong reliance on alfalfa could make the Little Bustard more vulnerable to changes in land use. This study is the first step to understand the winter trophic requirements of the endangered Little Bustard, but further research is necessary to understand the food requirements of this species during the entire annual cycle.
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
Historically, the development philosophy for the two Territories of Papua and New Guinea (known as TPNG, formerly two territories, Papua and New Guinea) was equated with economic development, with a focus on agricultural development. To achieve the modification or complete change in indigenous farming systems the Australian Government’s Department of External Territories adopted and utilised a programme based on agricultural extension. Prior to World War II, under Australian administration, the economic development of these two territories, as in many colonies of the time, was based on the institution of the plantation. Little was initiated in agriculture development for indigenous people. This changed after World War II to a rationale based on the promotion and advancement of primary industry, but also came to include indigenous farmers. To develop agriculture within a colony it was thought that a modification to, or in some cases the complete transformation of, existing farming systems was necessary to improve the material welfare of the population. It was also seen to be a guarantee for the future national interest of the sovereign state after independence was granted. The Didiman and Didimisis became the frontline, field operatives of this theoretical model of development. This thesis examines the Didiman’s field operations, the structural organisation of agricultural administration and the application of policy in the two territories.