981 resultados para Factor VIII deficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study assessed whether plasma concentrations of complement factors C3, C4, or immunoglobulins, serum classical pathway hemolytyic activity, or polymorphisms in the class I and II HLA genes, isotypes and gene numbers of C4, or allotypes of IgG1 and IgG3 heavy chain genes were associated with severe frequently recurring or chronic mucosal infections. According to strict clinical criteria, 188 consecutive voluntary patients without a known immunodeficiency and 198 control subjects were recruited. Frequencies of low levels in IgG1, IgG2, IgG3 and IgG4 were for the first time tested from adult general population and patients with acute rhinosinusitis. Frequently recurring intraoral herpes simplex type 1 infections, a rare form of the disease, was associated with homozygosity in HLA -A*, -B*, -C*, and -DR* genes. Frequently recurrent genital HSV-2 infections were associated with low levels of IgG1 and IgG3, present in 54% of the recruited patients. This association was partly allotype-dependent. The G3mg,G1ma/ax haplotype, together with low IgG3, was more common in patients than in control subjects who lacked antibodies against herpes simplex viruses. This is the first found immunogenetic deficiency in otherwise healthy adults that predisposes to highly frequent mucosal herpes recurrences. According to previous studies, HSV effectively evades the allotype G1ma/ax of IgG1, whereas G3mg is associated with low IgG3. Certain HLA genes were more common in patients than in control subjects. Having more than one C4A or C4B gene was associated with neuralgias caused by the virus. Low levels of IgA, IgG1, IgG2, IgG3, and IgG4 were common in the general adult population, but even more frequent in patients with chronic sinusitis. Only low IgG1 was more common chronic than in acute rhinosinusitis. Clinically, nasal polyposis and bronchial asthma were associated with complicated disease forms. The best differentiating immunologic parameters were C4A deficiency and the combination of low plasma IgG4 together with low IgG1 or IgG2, performing almost equally. The lack of C4A, IgA, and IgG4, all known to possess anti-inflammatory activity, together with a concurrently impaired immunity caused by low subclass levels, may predispose to chronic disease forms. In severe chronic adult periodontitis, any C4A or C4B deficiency combined was associated with the disease. The new quantitative analysis of C4 genes and the conventional C4 allotyping method complemented each other. Lowered levels of plasma C3 or C4 or both, and serum CH50 were found in herpes and periodontitis patients. In rhinosinusitis, there was a linear trend with the highest levels found in the order: acute > chronic rhinosinusitis > general population > blood donors with no self-reported history of rhinosinusitis. Complement is involved in the defense against the tested mucosal infections. Seemingly immunocompetent patients with chronic or recurrent mucosal infections frequently have subtle weaknesses in different arms of immunity. Their susceptibility to chronic disease forms may be caused by these. Host s subtly impaired immunity often coincides with effective immune evasion from the same arms of immunity by the disease-causing pathogens. The interpretation of low subclass levels, if no additional predisposing immunologic factors are tested, is difficult and of limited value in early diagnosis and treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal mobility of the two domain molecule of ribosome recycling factor (RRF) is known to be important for its action. Mycobacterium tuberculosis RRF does not complement E. coli for its deficiency of RRF (in the presence of E. coli EF-G alone). Crystal structure had revealed higher rigidity of the M. tuberculosis RRF due to the presence of additional salt bridges between domains. Two inter-domain salt bridges and one between the linker region and the domain containing C-terminal residues were disrupted by appropriate mutations. Except for a C-terminal deletion mutant, all mutants showed RRF activity in E. coli when M. tuberculosis EF-G was also co-expressed. The crystal structures of the point mutants, that of the C-terminal deletion mutant and that of the protein grown in the presence of a detergent, were determined. The increased mobility resulting from the disruption of the salt bridge involving the hinge region allows the appropriate mutant to weakly complement E. coli for its deficiency of RRF even in the absence of simultaneous expression of the mycobacterial EF-G. The loss of activity of the C-terminal deletion mutant appears to be partly due to the rigidification of the molecule consequent to changes in the hinge region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was conducted in 54 wetlands of 13 districts of Assam, India to evaluate the causes of fish depletion. Twenty-two variables were considered for the study. Seven factors were extracted through factor analysis (Principal Component Analysis) based on Eigen Value Criteria of more than one. These seven factors together accounted for 69.3% of the total variance. Based on the characteristics of the variables, all the factors were given descriptive names. These variables can be used to measure the extent of management deficiency of the causes of fish depletion in the wetlands. The factors are management deficiency, organic load interference, catchment condition, extrinsic influence, fishermen’s ignorance, external environment and aquaculture program. Management deficiency accounted for a substantial portion of the total variance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The endocannabinoid system is known to play a role in regulating myocardial contractility, but the influence of cannabinoid receptor 1 (CB1) deficiency on chronic heart failure (CHF) remains unclear. In this study we attempted to investigate the effect of CB1 deficiency on CHF induced by pressure overload and the possible mechanisms involved. Methods and results: A CHF model was created by transverse aortic constriction (TAC) in both CB1 knockout mice and wild-type mice. CB1 knockout mice showed a marked increase of mortality due to CHF from 4 to 8 weeks after TAC (p = 0.021). Five weeks after TAC, in contrast to wild-type mice, CB1 knockout mice had a higher left ventricular (LV) end-diastolic pressure, lower rate of LV pressure change (± dp/dt max), lower LV contractility index, and a larger heart weight to body weight ratio and lung weight to body weight ratio compared with wild-type mice (all p < 0.05-0.001). Phosphorylation of the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (P38 and ERK) was higher in CB1 knockout mice than that in wild-type mice. In cultured neonatal rat cardiomyocytes, a CB1 agonist reduced cAMP production stimulated by isoproterenol or forskolin, and suppressed phosphorylation of the EGFR, P38, and ERK, while the inhibitory effect of a CB1 agonist on EGFR phosphorylation was abrogated by CB1 knockdown. Conclusion: These findings indicate that cannabinoid receptor 1 inactivation promotes cardiac remodeling by enhancing the activity of the epidermal growth factor receptor and mitogen-activated protein kinases. © 2012 Elsevier Ireland Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 216 -320 Angstrom wavelength range. A comparison of these with an extensive dataset of solar active region, quiet- Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R-1 = I(216.94 Angstrom)/I(319.84 Angstrom) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 10(8)-10(11) cm(-3). However R-2 = I(276.85 Angstrom)/I(319.84 Angstrom) and R-3 = I(277.05 Angstrom)/I(319.84 Angstrom) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Angstrom lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Angstrom feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.

Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.

Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).

Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atypical hemolytic uremic syndrome (aHUS) is associated with defective complement regulation. Disease-associated mutations have been described in the genes encoding the complement regulators complement factor H, membrane cofactor protein, factor B, and factor I. In this study, we show in two independent cohorts of aHUS patients that deletion of two closely related genes, complement factor H-related 1 (CFHR1) and complement factor H-related 3 (CFHR3), increases the risk of aHUS. Amplification analysis and sequencing of genomic DNA of three affected individuals revealed a chromosomal deletion of approximately 84 kb in the RCA gene cluster, resulting in loss of the genes coding for CFHR1 and CFHR3, but leaving the genomic structure of factor H intact. The CFHR1 and CFHR3 genes are flanked by long homologous repeats with long interspersed nuclear elements (retrotransposons) and we suggest that nonallelic homologous recombination between these repeats results in the loss of the two genes. Impaired protection of erythrocytes from complement activation is observed in the serum of aHUS patients deficient in CFHR1 and CFHR3, thus suggesting a regulatory role for CFHR1 and CFHR3 in complement activation. The identification of CFHR1/CFHR3 deficiency in aHUS patients may lead to the design of new diagnostic approaches, such as enhanced testing for these genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real time digital signal processing requires the development of high performance arithmetic algorithms suitable for VLSI design. In this paper, a new online, circular coordinate system CORDIC algorithm is described, which has a constant scale factor. This algorithm was developed using a new Angular Representation (AR) model A radix 2 version of the CORDIC algorithm is presented, along with an architecture suitable for VLSI implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune inflammatory demyelination that is mediated by Th1 and Th17 cells. The transcription factor interferon regulatory factor 3 (IRF3) is activated by pathogen recognition receptors and induces interferon-beta production.

METHODS: To determine the role of IRF3 in autoimmune inflammation, we immunised wild-type (WT) and irf3-/- mice to induce EAE. Splenocytes from WT and irf3-/- mice were also activated in vitro in Th17-polarising conditions.

RESULTS: Clinical signs of disease were significantly lower in mice lacking IRF3, with reduced Th1 and Th17 cells in the central nervous system. Peripheral T-cell responses were also diminished, including impaired proliferation and Th17 development in irf3-/- mice. Myelin-reactive CD4+ cells lacking IRF3 completely failed to transfer EAE in Th17-polarised models as did WT cells transferred into irf3-/- recipients. Furthermore, IRF3 deficiency in non-CD4+ cells conferred impairment of Th17 development in antigen-activated cultures.

CONCLUSION: These data show that IRF3 plays a crucial role in development of Th17 responses and EAE and warrants investigation in human multiple sclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes.

Approach and Results: In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation.

Conclusions: This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.