997 resultados para Fabric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between the incidents counted by the measurement wire of the Wool ComfortMeter (WCM) and the previously published neurophysiological basis for fabric-evoked prickle have been investigated for lightweight knitted woolen fabrics. The fiber lengths and diameters capable of triggering the fabric-evoked prickle sensation were calculated using Euler’s buckling formula, and it is suggested that fibers as fine as 10 mm are capable of triggering the prickle response if they have a short enough free length protruding from the surface. Good agreement was found between the sensory assessed human prickle sensation and the wearer prickle response predicted using the WCM outputs, especially when the latter were transformed using Stevens’s Psychophysical Power Law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photochromic fabrics were prepared by a dip-coating method using a silica sol-gel solution containing photochromic dyes. The coated fabric showed a rapid photochromic response. Three methods; incorporating a UV stabilizer in the coating layer, hydrophobic treatment of the porous surface, and covering the coating layer with an additional silica layer; were used to improve the photostability and durability. All three treatments improved the photostability without noticeably changing the photochromic response/fading speeds. Most of the treatments reduced the washing and abrasion durability. The extra coating layer increased the fabric rigidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the relationships between the sensations of sweaty, damp, muggy and clingy, as assessed by human response from wearer trial garment assessment, and fiber type, fiber, yarn and fabric properties and instrumental fabric measurements of next-to-skin knitwear. Wearer trial assessment of 48 fabrics followed a strict 60 minute protocol including a range of environmental conditions and levels of exercise. Adjusted mean weighted scores were determined using linked garments. Instrumental fabric handle measurements were determined with the Wool HandleMeter (WHM) and Wool ComfortMeter. Data were analyzed using forward stepwise general linear modeling. Mean fiber diameter (MFD) affected the sweaty, damp, muggy and clingy sensation responses accounting for between 23.5% and 56.2% of the variance of these sensations. In all cases, finer fibers were associated with lower sensation scores (preferred). There were also effects of fiber type upon sweaty, muggy and clingy scores, with polyester fiber fabrics having higher scores (less preferred) compared with fabrics composed of wool, particularly for peak sweaty scores in hot and active environments. Attributes such as fabric density, yarn linear density, knitting structure and finishing treatments, but not fabric thickness, accounted for some further variance in these attributes once MFD had been taken into account. This is explained as finer fibers have a greater surface area for any given mass of fiber and so finer fibers can act as a more effective sink for moisture compared with coarser fibers. No fabric handle parameter or other attribute of fiber diameter distribution was significant in affecting these sensation scores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The handle properties of single jersey fabrics composed of superfine wools (17 μm) of different fibre curvature (114 vs. 74 °/mm) in blends with cashmere (fibre curvature 49 °/mm) were investigated. There were four blend ratios of cashmere (0, 25, 50, 75%) plus 100% cashmere. Each of the nine fibre blend combinations were replicated three times, and each was knitted into three tightness factors. The 81 fabrics were evaluated using the Wool HandleMeter, which measures seven primary handle attributes and Overall handle, and have been calibrated using a panel of experts and a wide variety of commercial fabrics. Results were analysed by ANOVA and general linear modelling. Tightness factor significantly affected all Wool HandleMeter attribute values, with the effect of tightness factor varying according to handle attribute. The Wool HandleMeter was able to detect differences between fabrics composed of superfine wool differing in fibre curvature, with lower fibre curvature wool fabrics having more preferred Overall handle and softer, looser, cooler, lighter and less dry handle attributes at some or all tightness factors compared with fabrics composed of higher fibre curvature superfine wool. Progressively blending cashmere with wool significantly improved Overall handle, increased soft and smooth handle, reduced dry, heavy and tight handle. Linear regression modelling indicated that fabric mass per unit area explained more than 50% of the variance in overall fabric handle and in combination with variations in fabric thickness and yarn elongation could explain 71% of the variance in Overall handle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is a natural and non-toxic polymer which can be used as a multifunctional, e.g. antimicrobial or anti-wrinkle, agent on cotton fabrics. However, due to the lack of strong bonding forces between two polysaccharides, chitosan coating on cotton has poor durability. To provide efficient and irreversible chitosan adsorption on cotton substrate, it is required to build appropriate binding sites and to activate the substrate material properly. For this purpose, plasma treatment can be a promising method as it can activate the surface of the cotton fabric and improve the adsorption of chemicals in a completely harmless procedure. In this study, we investigated the effect of atmospheric pressure plasma treatment on adsorption of chitosan onto the cotton fabric. The purpose of the study was to investigate to which extent adsorption of chitosan on cotton can be improved by helium plasma treatment. Fibre surface and adsorption of chitosan were characterized by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared (FTIR) spectroscopy. Changes in hydrophobicity of fabric`s surface and fibre morphology were evaluated using contact angle method and scanning electron microscopy (SEM), respectively. The results from XPS showed an increase in the C=O bonds on cotton fabrics oxydised by helium plasma treatmnets, confirming the formation of aldehyde groups in cellulose. The characteristic absorbance band of chitosan, amide II (N-H bending vibration) showed an enlargement for all fabrics treated with helium and chitosan, as assesed by FTIR. The absorbance peaks of CH2 stretching vibrations, which confirm chitosan existence, were stronger for all treated fabrics compared to the untreated control. While the plasma only treated fabric surface was very hydrophilic, the surface became hydrophobic after chitosan coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stitched fabrics have been widely studied for potential application in aircraft structures since stitch yarns offer improvements in the out-of-plane mechanical properties and also can save time in the lay up process. The down side of stitch yarns came up in the manufacturing process of fabric in which defects introduced by the needle movement creating fiber-free-zones, fiber breakage and misalignment of fibers. The dry stitched carbon fabric preform has mainly been used in the Resin Transfer Molding (RTM) process which high fiber content is aimed, those defects influence negatively the injection behavior reducing the mechanical properties of final material. The purpose of this research work focused on testing in quasi-static mechanical mode (in-plane tension) of a monocomponent resin CYCOM (R) 890 RTM/carbon fiber anti-symmetric quadriaxial fabric stitched by PE 80Dtex yarn processed by RTM. The evaluation consisted in comparing the scatter of the quasi-static test with the attenuation of ultrasonic maps, which show the path of the resin and possible dry spots considering that interference of yarn in resin flow is detectable in ultrasonic measurement. Microscopic analysis was also considered for further evaluation in case of premature failure. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamictites interbedded with marine shales and turbidites onlap the eastern border of the Parana Basin (Southern Brazil). These poorly sorted sediments were deposited during the Permo-Carboniferous glaciation, and their matrix-supported clasts show no preferred orientation. These massive rocks have been studied using anisotropy of magnetic susceptibility (AMS) and grain shape fabric. Hysteresis loops and thermomagnetic measurements show that AMS depends mostly on the paramagnetic clays, but fine ferromagnetic particles also contribute to the anisotropy. The coarse silt to sand grain preferred orientation study supports the use of AMS in describing the diamictite fabric, at least regarding the orientation of the foliation. AMS and grain shape data reveal subhorizontal to weakly inclined magnetic and grain shape foliation parallel to the regional bedding. The magnetic lineations are normally scattered within the foliation plane in agreement with the oblate AMS ellipsoids found in these rocks. Both fabric patterns are consistent with deposition by subaqueous mudflows that were resedimented downslope, with elastic supply from continental sources. The off-vertical grain shape foliation poles suggest that the deposition of diamictites was controlled by the depocentre topography of the Rio do Sul sub-basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of carbon fiber surface characteristics on flexural properties of structural composites is studied in this work. Two types of intermediate modulus carbon fibers were used: T800HB and IM7. Results revealed that higher mechanical properties are linked with higher interfacial adhesion. Morphologies and chemical compositions of commercial carbon fibers (CF) were characterized by Fourier Transformed Infra Red (FTIR) and Scanning Electronic Microscopy (SEM). Comparing the results, the T800HB apparently has more roughness, since the IM7 seems to be recovered for a polymeric film. On other hand, the IM7 one shows higher interactivity with epoxy resin system Cycom 890 RTM. Composites produced with Resin Transfer Molding (RTM) were tested on a flexural trial. Interfacial adhesion difference was showed with SEM and Dynamic Mechanical Analyses (DMA), justifying the higher flexural behavior of composites made with IM7 fibers. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.