953 resultados para FIXATION TECHNIQUES
Resumo:
Introduction: The photoelasticity is used for assessing the tensions/deformations involved in photoelastic materials when submitted to a given load by the observation of optical effects. The screw performance and mechanical functions are directly associated to the quality of the screws fixation in the vertebrae. Photoelasticity is an important tool to perform comparative studies of this nature. Objective: The aim of this study was to compare, by using photoelasticity, internal stresses produced by the screw with an external diameter of 6 mm, when submitted to two different pullout strengths. Materials and Methods: For this, four photoelastic models were produced. The simulation was conducted by using two pullout strengths: 0.75 and 1.50 kgf. The maximum shear stresses were calculated on 19 points around the screws, using the Tardy compensation method. Results:The values of maximum shear stress were higher with the load of 1.50 kgf. Conclusion: Thus, the screw will be more susceptible to pullout when heavier loads are applied. According to our analysis, we also found that the site with the highest maximum shear stress was found to be at the peak of creast, particularly near the tips of the screws, regardless of the load employed.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
Objective: To evaluate oral feeding capacity, the swallowing process, and risk for aspiration, both clinically and during fiberoptic endoscopic evaluation of swallowing, in infants with isolated Robin sequence treated exclusively with nasopharyngeal intubation and feeding facilitating techniques. Design: Longitudinal and prospective study. Setting: Hospital de Reabilitacao de Anomalies Craniofaciais, University of Sao Paulo, Bauru, Brazil. Patients: Eleven infants with isolated Robin sequence, under 2 months of age, treated with nasopharyngeal intubation. Interventions: Feeding facilitating techniques were applied in all infants throughout the study period. The infants were evaluated clinically and through fiberoptic endoscopic evaluation of swallowing at first, second, and, if necessary, third week of hospitalization (T1, T2, T3). The mean volume of ingested milk was registered during clinical evaluation, and events were registered during feeding. Results: The respiratory status of all infants was improved after nasopharyngeal intubation; 72% of them presented risk for aspiration during fiberoptic endoscopic evaluation of swallowing at T1. This risk was less frequent when thickened milk was given to the infants and at subsequent evaluations (T2 and T3). Conclusions: Nasopharyngeal intubation aids in stabilizing the airway in isolated Robin sequence, but it does not relate directly to feeding. The risk for aspiration was present in most of the infants, mainly during the first week of hospitalization, and improved within a few weeks, after the use of feeding facilitating techniques.
Resumo:
Objectives To compare the biomechanical characteristics of 2 arthrodesis techniques for the equine proximal interphalangeal joint (PIP) using either a 3-hole 4.5 mm locking compression plate (LCP) or 3-hole 4.5 mm narrow dynamic compression plate (DCP), both with 2 transarticular 5.5 mm cortex screws. Study Design Experimental. Sample Population Cadaveric adult equine forelimbs (*n=6 pairs). Methods For each forelimb pair, 1 limb was randomly assigned to 1 of 2 treatment groups and the contralateral limb by default to the other treatment group. Construct stiffness, gap formation across the PIP joint, and rotation about the PIP joint were determined for each construct before cyclic axial loading and after each of four, 5000 cycle loading regimens. After the 20,000 cycle axial loading regimen, each construct was loaded to failure. Results There were no significant differences in construct stiffness, gap formation, or sagittal plane rotation between the LCP and DCP treatment groups at any of the measured time points. Conclusion Biomechanically, fixation of the equine PIP joint with a 3-hole 4.5 mm LCP is equivalent to fixation with a 3-hole 4.5 mm narrow DCP under the test conditions used.