959 resultados para FIELD EMISSION
Resumo:
The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.
Resumo:
Field emission from a series of tetrahedrally bonded amorphous-carbon (ta-C) films, deposited in a filtered cathodic vacuum arc, has been measured. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have threshold fields of the order 10-15 V/μm and optimally nitrogen doped films exhibited fields as low as 5 V/μm. In order to gain further understanding of the mechanism of field emission, the films were also subjected to H2, Ar, and O2 plasma treatments and were also deposited onto substrates of different work function. The threshold field, emission current, emission site densities were all significantly improved by the plasma treatment, but little dependence of these properties on work function of the substrate was observed. This suggests that the main barrier to emission in these films is at the front surface.
Resumo:
The field emission properties of nanostructured carbon films deposited by cathodic vacuum arc in a He atmosphere have been studied by measuring the emission currents and the emission site density. The films have an onset field of ∼ 3 V/μm. The emission site density is viewed on a phosphor anode and it increases rapidly with applied field. It is assumed that the emission occurs from surface regions with a range of field enhancement factors but with a constant work function. The field enhancement factor is found to have an exponential distribution.
Resumo:
This paper will report on the production, dimensional control, and characterization of arrays of cold-cathode field emitters based on multiwall carbon nanotubes, suitable for use in large-area field-emission-based displays.