986 resultados para FERROMAGNETIC INTERMOLECULAR INTERACTIONS
Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain.
Resumo:
Pleckstrin homology (PH) domains are found in many signaling molecules and are thought to be involved in specific intermolecular interactions. Their binding to several proteins and to membranes containing 1-alpha-phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been reported. A region that includes the PH domain has also been implicated in binding of phospholipase C-delta 1 (PLC-delta 1) to both PtdIns(4,5)P2 and D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] [Cifuentes, M. E., Delaney, T. & Rebecchi, M. J. (1994) J. Biol. Chem. 269, 1945-1948]. We report herein that the isolated PH domain from PLC-delta 1 binds to both PtdIns(4,5)P2 and Ins(1,4,5)P3 with high affinity and shows the same binding specificity seen by others with whole PLC-delta 1. Thus the PH domain is functionally and structurally modular. These results demonstrate stereo-specific high-affinity binding by an isolated PH domain and further support a functional role for PH domains in the regulation of PLC isoforms. Other PH domains did not bind strongly to the compounds tested, suggesting that inositol phosphates and phospholipids are not likely physiological ligands for all PH domains. Nonetheless, since all PH-domain-containing proteins are associated with membrane surfaces, several PH domains bind to specific sites on membranes, and PH domains appear to be electrostatically polarized, a possible general role for PH domains in membrane association is suggested.
Resumo:
A scanning force microscope was converted to an electrostatic force microscope by charging the usually neutral cantilever with phospholipids. The electrostatic force microscope was used to study surface electrostatic charges of samples in aqueous solutions. Lysozymes, DEAE-Sephadex beads, 3-propyltriethoxysilane-treated glass and mica were imaged in water or phosphate buffer with electrostatic force microscopy. The adhesion force measured when a charged probe and oppositely charged specimen interacted was up to 500 times greater than when a bare probe was used. This dramatic increase in measured adhesion force can be attributed to the energy required to break the salt bridges formed between the charged probe and the specimen. The use of phospholipids to functionalize the cantilever tip allows the incorporation of other biomolecules and ligands that can be used as biologically specific tips (e.g., receptors, drugs) for the study of intermolecular interactions.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. (C) 2004 American Institute of Physics.
Resumo:
We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.
Resumo:
We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.
Resumo:
Eugenin [pGluGlnAspTyr(SO3)ValPheMetHisProPhe-NH2] has been isolated from the pouches of female Tammar wallabies (Macropus eugenii) carrying young in the early lactation period. The sequence of eugenin has been determined using a combination of positive and negative ion electrospray mass spectrometry. This compound bears some structural resemblance to the mammalian neuropeptide cholecystokinin 8 [AspTyr(SO3)MetGlyTrpMetAspPhe-NH2] and to the amphibian caerulein peptides [caerulein: pGluGlnAspTyr(SO3)ThrGlyTrpMetAspPhe-NH2]. Eugenin has been synthesized by a route which causes only minor hydrolysis of the sulfate group when the peptide is removed from the resin support. Biological activity tests with eugenin indicate that it contracts smooth muscle at a concentration of 10(-9) m, and enhances the proliferation of splenocytes at 10(-7) M, probably via activation of CCK2 receptors. The activity of eugenin on splenocytes suggests that it is an immunomodulator peptide which plays a role in the protection of pouch young.
Resumo:
We have designed an amphipathic peptide, AM1, that can self-assemble at the air-water interface to form an interfacial ensemble capable of switching between a mechanically strong cohesive film state and a mobile detergent state in response to changes in the solution conditions. The mechanical properties of the AM1 ensemble in the cohesive film state are qualitatively equivalent to the protein beta-LG, while in the mobile detergent state they are equivalent to the low molecular weight surfactant, SDS. In this work the foaming properties of AM1 are compared to those of beta-LG and SDS at the same weight concentration and it is found that AM1 adsorbs rapidly to the interface, initially forming a dense foam like that formed by SDS and superior to beta-LG. In addition, under solution conditions where interfacially adsorbed AM1 forms a cohesive film state the foam stability is high, comparable to beta-LG. However when the interfacially adsorbed AM1 forms a foam under detergent-state conditions, the foam stability is poor. We have achieved control of foam stability through the design of a peptide that exhibits stimuli-responsive changes in the extent of intermolecular interactions between peptide molecules adsorbed at the air water interface. These results illustrate the exciting potential of peptide surfactants to form a new class of stimuli-responsive foaming agents.
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
The Scintillation Proximity Assay (SPA) is a method that is frequently used to detect and quantify the strength of intermolecular interactions between a biological receptor and ligand molecule in aqueous media. This thesis describes the synthesis of scintillant-tagged-compounds for application in a novel cell-based SPA. A series of 4-functianlised-2,5-diphenyloxazole molecules were synthesised. These 4-functionalised-2,5-diphenyloxazoles were evaluated by Sense Proteomic Ltd. Accordingly, the molecules were evaluated for the ability to scintillate in the presence of ionising radiation. In addition, the molecules were incorporated into liposomal preparations which were subsequently evaluated for the ability to scintillate in the presence of ionising radiation. The optimal liposomal preparation was introduced into the membrane of HeLa cells that were used successfully in a cell-based SPA to detect and quantify the uptake of [14C]methionine. This thesis also describes the synthesis and subsequent polymerisation of novel poly(oxyethylene glycol)-based monomers to form a series of new polymer supports. These Poly(oxyethylene glycol)-polymer (POP) supports were evaluated for the ability to swell and mass-uptake in a variety of solvents, demonstrating that POP-supports exhibit enhanced solvent compatibilities over several commercial resins. The utility of POP-supports in solid-phase synthesis was also demonstrated successfully. The incorporation of (4’-vinyl)-4-benzyl-2,5-diphenyloxazole in varying mole percentage into the monomer composition resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents and scintillate efficiently in the presence of ionising radiation. The utility of POP-Sc supports in solid-phase synthesis and subsequent in-situ SPA to detect and quantify, in real-time, the kinetic progress of a solid-phase reaction was exemplified successfully.In addition, POP-Sc supports were used successfully both in solid-phase combinatorial synthesis of a peptide nucleic acid (PNA)-library and subsequent screening of this library for the ability to hybridise with DNA, which was labelled with a suitable radio-isotape. This data was used to identify the dependence of the number and position of complimentary codon pairs upon the extent of hybridisation. Finally, a further SPA was used to demonstrate the excellent compatibility of POP-Sc supports for use in the detection and quantification of enzyme assays conducted within the matrix of the POP-Sc support.
Resumo:
The process of adsorption and micellization of the surfactants sodium dodecyl sulfate, dodecylammonium chloride and hexaethylene glycol mono-n-dodecyl ether in water-air interface has been studied using measurements of surface tension in aqueous media and NaCl 0.1 mol/L in temperatures of 25, 33 and 40 °C. From these data, critical micelle concentrations and thermodynamic parameters of micellization and adsorption were determined in order to elucidate the behaviors of micellization and adsorption for these surfactants in the proposed medium. For the determination of the thermodynamic parameters of adsorption we utilized the equations of isotherms of Langmuir and Gibbs. Γmáx values determined by the different equations were correlated to the explanation of results. Temperature and salinity were analyzed in terms of their influence on the micellization and adsorption process, and the results were explained based on intermolecular interactions. The values of Gmic have confirmed that the micelle formation for the surfactants studied occurs spontaneously
Resumo:
The work presented in this dissertation focused on the development and characterisation of novel cocrystals that incorporated the thioamide, amide and imide functional groups. A particular emphasis was placed on the characterisation of these cocrystals by single crystal X-ray diffraction methods. In Chapter One a summary of the intermolecular interactions utilised in this work and a short review of the solid state and multicomponent systems is provided. A brief introduction to the ways in which different multicomponent systems can be distinguished, crystal engineering strategies and a number of cocrystal applications highlights the importance the understanding of intermolecular interactions can have on the physical and chemical properties of crystalline materials. Chapter Two is the first Results and Discussion chapter and includes an introduction that is specific to the chapter. The main body of this work focuses on the primary aromatic thioamide functional group and its propensity to cocrystallise with a number of sulfoxides. Unlike the amide functional group, thioamides are not commonly employed in cocrystallisation studies. This chapter presents the first direct comparison between the cocrystallisation abilities of these two functional groups and the intermolecular hydrogen bonding interactions present in the cocrystal structures are examined. Chapter Three describes the crystal landscape of a short series of secondary aromatic amides and their analogous thioamides. Building on the results obtained in Chapter Two, a cocrystal screen of the secondary thioamides with the sulfoxide functional group was carried out in order to determine the effect removing a hydrogen bond had on the supramolecular synthons observed in the cocrystals. These secondary thioamides are also utilised in Chapter Four, which examines their halogen bonding capabilities with two organoiodine coformers: 1,2- and 1,4-diiodotetrafluorobenzene. Chapter Five explores the cocrystallisation abilities of three related cyclic imides as coformers for cocrystallisation with a range of commonly used coformers. Chapter Six is an overall conclusions chapter that highlights the findings of the results presented in Chapters Two to Five. Chapter Seven details the instrument and experimental data for the compounds and cocrystals discussed in the Results and Discussion Chapters. The accompanying CD contains all of the crystallographic data in .cif format for the novel single crystal structures characterised in this work.
Resumo:
New methods for creating theranostic systems with simultaneous encapsulation of therapeutic, diagnostic, and targeting agents are much sought after. This work reports for the first time the use of coaxial electrospinning to prepare such systems in the form of core–shell fibers. Eudragit S100 was used to form the shell of the fibers, while the core comprised poly(ethylene oxide) loaded with the magnetic resonance contrast agent Gd(DTPA) (Gd(III) diethylenetriaminepentaacetate hydrate) and indomethacin as a model therapeutic agent. The fibers had linear cylindrical morphologies with clear core–shell structures, as demonstrated by electron microscopy. X-ray diffraction and differential scanning calorimetry proved that both indomethacin and Gd(DTPA) were present in the fibers in the amorphous physical form. This is thought to be a result of intermolecular interactions between the different components, the presence of which was suggested by infrared spectroscopy. In vitro dissolution tests indicated that the fibers could provide targeted release of the active ingredients through a combined mechanism of erosion and diffusion. The proton relaxivities for Gd(DTPA) released from the fibers into tris buffer increased (r1 = 4.79–9.75 s–1 mM–1; r2 = 7.98–14.22 s–1 mM–1) compared with fresh Gd(DTPA) (r1 = 4.13 s–1 mM–1 and r2 = 4.40 s–1 mM–1), which proved that electrospinning has not diminished the contrast properties of the complex. The new systems reported herein thus offer a new platform for delivering therapeutic and imaging agents simultaneously to the colon.
Resumo:
Résumé : Les méthodes de détection de similarités de sites de liaison servent entre autres à la prédiction de fonction et à la prédiction de cibles croisées. Ces méthodes peuvent aider à prévenir les effets secondaires, suggérer le repositionnement de médicament existants, identifier des cibles polypharmacologiques et des remplacements bio-isostériques. La plupart des méthodes utilisent des représentations basées sur les atomes, même si les champs d’interaction moléculaire (MIFs) représentent plus directement ce qui cherche à être identifié. Nous avons développé une méthode bio-informatique, IsoMif, qui détecte les similarités de MIF entre différents sites de liaisons et qui ne nécessite aucun alignement de séquence ou de structure. Sa performance a été comparée à d’autres méthodes avec des bancs d’essais, ce qui n’a jamais été fait pour une méthode basée sur les MIFs. IsoMif performe mieux en moyenne et est plus robuste. Nous avons noté des limites intrinsèques à la méthodologie et d’autres qui proviennent de la nature. L’impact de choix de conception sur la performance est discuté. Nous avons développé une interface en ligne qui permet la détection de similarités entre une protéine et différents ensembles de MIFs précalculés ou à des MIFs choisis par l’utilisateur. Des sessions PyMOL peuvent être téléchargées afin de visualiser les similarités identifiées pour différentes interactions intermoléculaires. Nous avons appliqué IsoMif pour identifier des cibles croisées potentielles de drogues lors d’une analyse à large échelle (5,6 millions de comparaisons). Des simulations d’arrimage moléculaire ont également été effectuées pour les prédictions significatives. L’objectif est de générer des hypothèses de repositionnement et de mécanismes d’effets secondaires observés. Plusieurs exemples sont présentés à cet égard.