866 resultados para Extreme Loads
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subjectspecific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.
Resumo:
Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.
Resumo:
The export of sediments from coastal catchments can have detrimental impacts on estuaries and near shore reef ecosystems such as the Great Barrier Reef. Catchment management approaches aimed at reducing sediment loads require monitoring to evaluate their effectiveness in reducing loads over time. However, load estimation is not a trivial task due to the complex behaviour of constituents in natural streams, the variability of water flows and often a limited amount of data. Regression is commonly used for load estimation and provides a fundamental tool for trend estimation by standardising the other time specific covariates such as flow. This study investigates whether load estimates and resultant power to detect trends can be enhanced by (i) modelling the error structure so that temporal correlation can be better quantified, (ii) making use of predictive variables, and (iii) by identifying an efficient and feasible sampling strategy that may be used to reduce sampling error. To achieve this, we propose a new regression model that includes an innovative compounding errors model structure and uses two additional predictive variables (average discounted flow and turbidity). By combining this modelling approach with a new, regularly optimised, sampling strategy, which adds uniformity to the event sampling strategy, the predictive power was increased to 90%. Using the enhanced regression model proposed here, it was possible to detect a trend of 20% over 20 years. This result is in stark contrast to previous conclusions presented in the literature. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
There are numerous load estimation methods available, some of which are captured in various online tools. However, most estimators are subject to large biases statistically, and their associated uncertainties are often not reported. This makes interpretation difficult and the estimation of trends or determination of optimal sampling regimes impossible to assess. In this paper, we first propose two indices for measuring the extent of sampling bias, and then provide steps for obtaining reliable load estimates by minimizing the biases and making use of possible predictive variables. The load estimation procedure can be summarized by the following four steps: - (i) output the flow rates at regular time intervals (e.g. 10 minutes) using a time series model that captures all the peak flows; - (ii) output the predicted flow rates as in (i) at the concentration sampling times, if the corresponding flow rates are not collected; - (iii) establish a predictive model for the concentration data, which incorporates all possible predictor variables and output the predicted concentrations at the regular time intervals as in (i), and; - (iv) obtain the sum of all the products of the predicted flow and the predicted concentration over the regular time intervals to represent an estimate of the load. The key step to this approach is in the development of an appropriate predictive model for concentration. This is achieved using a generalized regression (rating-curve) approach with additional predictors that capture unique features in the flow data, namely the concept of the first flush, the location of the event on the hydrograph (e.g. rise or fall) and cumulative discounted flow. The latter may be thought of as a measure of constituent exhaustion occurring during flood events. The model also has the capacity to accommodate autocorrelation in model errors which are the result of intensive sampling during floods. Incorporating this additional information can significantly improve the predictability of concentration, and ultimately the precision with which the pollutant load is estimated. We also provide a measure of the standard error of the load estimate which incorporates model, spatial and/or temporal errors. This method also has the capacity to incorporate measurement error incurred through the sampling of flow. We illustrate this approach using the concentrations of total suspended sediment (TSS) and nitrogen oxide (NOx) and gauged flow data from the Burdekin River, a catchment delivering to the Great Barrier Reef. The sampling biases for NOx concentrations range from 2 to 10 times indicating severe biases. As we expect, the traditional average and extrapolation methods produce much higher estimates than those when bias in sampling is taken into account.
Resumo:
Joints are primary sources of weakness in structures. Pin joints are very common and are used where periodic disassembly of components is needed. A circular pin in a circular hole in an infinitely large plate is an abstraction of such a pin joint. A two-dimensional plane-stress analysis of such a configuration is carried out, here, subjected to pin-bearing and/or biaxial-plate loading. The pin is assumed to be rigid compared to the plate material. For pin load the reactive stresses at the edges of the infinite plate tend to zero though their integral over the external boundary equals to the pin load. The pin-hole interface is unbonded and so beyond some load levels the plate separates from the pin and the extent of separation is a non-linear function of load level. The problem is solved by inverse technique where the extent of contact is specified and the causative loads are evaluated directly. In the situations where combined load is acting the separation-contact zone specification generally needs two parameters (angles) to be specified. The present report deals with analysing such a situation in metallic (or isotropic) plates. Numerical results are provided for parametric representation and the methodology is demonstrated.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.
Resumo:
In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.