961 resultados para Expression Patterns
Resumo:
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds.
Resumo:
Cancer cells are known to display increased glucose uptake and consumption. The glucose transporter (GLUT) proteins facilitate glucose uptake, however, their exact role in cancer metabolism remains unclear. The present study examined mRNA and protein expression of GLUT1, GLUT3, GLUT4 and GLUT12 in lung, breast and prostate cancer cells and corresponding noncancerous cells. Additionally, GLUT expression was determined in tumours from mice xenografted with human cancer cells. Differences in the mRNA and protein expression of GLUTs were found between cancerous and corresponding noncancerous cells. These findings demonstrate abundant expression of GLUT1 in cancer and highlight the importance of GLUT3 as it was expressed in several cancer cells and tumours. GLUT expression patterns in vitro were supported by the in vivo findings. The study of GLUT protein expression in cancer is important for understanding cancer metabolism and may lead to identification of biomarkers of cancer progression and development of target therapies.
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
The ascidian Ciona intestinalis, a marine invertebrate chordate, is an emerging model system for developmental and evolutionary studies. The endostyle, one of the characteristic organs of ascidians, is a pharyngeal structure with iodine-concentrating and peroxidase activities and is therefore considered to be homologous to the follicular thyroid of higher vertebrates. We have previously reported that a limited part of the endostyle (zone VII) is marked by the expression of orthologs of the thyroid peroxidase (TPO) and thyroid transcription factor-2 (TTF-2/FoxE) genes. In this study, we have identified the Ciona homolog of NADPH oxidase/peroxidase (Duox), which provides hydrogen peroxide (H2O2) for iodine metabolism by TPO in the vertebrate thyroid. Expression patterns assessed by in situ hybridization have revealed that Ciona Duox (Ci-Duox) is predominantly expressed in the dorsal part of zone VII of the endostyle. Furthermore, two-color fluorescent in situ hybridization with Ci-Duox and Ciona TPO (CiTPO) has revealed that the ventral boundary of the Ci-Duox domain of expression is more dorsal than that of CiTPO. We have also characterized several genes, such as Ci-Fgf8/17/18, 5HT7, and Ci-NK4, which are predominantly expressed in the ventral part of zone VII, in a region complementary to the Ci-Duox expression domain. These observations suggest that, at the molecular level, zone VII has a complex organization that might have some impact on the specification of cell types and functions in this thyroid-equivalent element of the ascidian endostyle.
Resumo:
The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/MoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. (c) 2005 Wiley-Liss, Inc.
Resumo:
An understanding of the multi-step nature of cancer as it is in the breast, as a series of pivotal genetic/epigenetic modifications is irrefutably a milestone in diagnostics, prognostics and eventually providing a cure. Here we have utilised a variant of analysis of variance (ANOVA) as a model for the identification and tracking of specific mRNA species whose transcription has been significantly altered at each grade in the progression of ductal carcinoma, making it possible to correlate histological progression with the genetic events underlying breast cancer. We show that in the progression of ductal carcinomas, from grade 1 to 3, there is a reduction in the actual number of mRNA species, which are significantly over or under expressed. We also show that this technique can be employed to generate differential gene expression patterns, whereby the combined expression profile of the tailored spectra of genes in the comparison of each ductal grade is sufficient to render them on clearly separate arms of an array-wise hierarchical cluster dendrogram.
Resumo:
We compare the expression patterns in Ciona intestinalis of three members of the Pax gene family, CiPax3/7, CiPax6 and Cipax2/5/8. All three genes are expressed in restricted patterns in the developing central nervous system. At the tailbud stage, CiPax3/7 is present in three patches in the brain and along the posterior neural tube, CiPax6 throughout the anterior brain and along the posterior neural tube and CiPax2/5/8 in a restricted region of the posterior brain. Double in situ hybridisations were used to identify areas of overlap between the expression of different genes. This showed that CiPax3/7 overlaps with the boundaries of CiPax6 expression in the anterior brain, and with CiPax2/5/8 in the posterior brain. The overlap between CiPax3/7 and CiPax2/5/8 is unlike that described in the ascidian Halocynthia rorezti. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective:Gene expression studies have revealed several molecular subtypes of breast carcinoma with distinct clinical and biological behaviours. DNA microarray studies correlated with immunohistochemical profiling of breast carcinomas using cytokeratin (CK) markers, Her2/neu, oestrogen receptor (ER), and basal myoepithelial cell markers have identified five breast tumour subtypes: (i) luminal A (ER+; Her2/neu-), (ii) luminal B (ER+; Her2/neu+), (iii) Her2 overexpression (ER-; Her2/neu+), (iv) basal-like (ER-; Her2/neu-, CK5/6 and 14+), and (v) negative for all markers. Luminal carcinomas express cytokeratins in a luminal pattern (CK8/18), and the basal-like type expresses CK5/6 and CK14 or basal epithelial cell markers. CK5/6, CK8/18, and smooth muscle actin (SMA) expression were assessed in cell blocks and compared with expression in surgical specimens.Methods:Sixty-two cases of breast carcinoma diagnosed by fine needle aspiration cytology with cell blocks and available surgical specimens were included. Cell blocks containing at least 10 high-power fields each with at least 10 tumour cells and surgical specimens were immunostained for CK5/6, CK8/18 and SMA.Results:Percentage sensitivity, specificity, positive predictive value, negative predictive value and accuracy were, respectively, 77, 100, 100, 92 and 94 for CK5/6; 98, 66, 96, 80 and 95 for CK8/18; and 92, 96, 85, 98 and 95 for SMA.Conclusion:The identification of CK5/6, CK8/18 and SMA by immunohistochemistry in cell blocks can be a reliable method that yields results close to those obtained in surgical specimens, and can contribute to the classification of breast carcinomas with luminal and basal expression patterns, providing helpful information in the choice of treatment and in the evaluation of prognostic and predictive factors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system.Results: A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human.Conclusion: Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.
Resumo:
Background: The purpose of this experimental study was to evaluate the collagen fiber distribution histologically after phenytoin, cyclosporin, or nifedipine therapy and to correlate it with collagen I and matrix metalloproteinase (MMP)-1 and -2 gene expression levels.Methods: Gingival samples from the canine area were obtained from 12 male monkeys (Cebus apella). The mesial part of each sample was assessed by reverse transcription-polymerase chain reaction, whereas the distal part was processed histologically for picrosirius red and hematoxylin and eosin stainings, as well as for collagen IV immunostaining. One week after the first biopsy, the animals were assigned to three groups that received daily oral dosages of cyclosporin, phenytoin, or nifedipine for 120 days. Additional gingival samples were obtained on days 52 and 120 of treatment from two animals from each group on the opposite sides from the first biopsies.Results: Picrosirius red staining showed a predominance of mature collagen fibers in the control group. Conversely, there was an enlargement of areas occupied by immature collagen fibers in all groups at days 52 and 120, which was not uniform over each section. There was a general trend to lower levels of MMP-1 gene expression on day 52 and increased levels on day 120. Phenytoin led to increased levels of MMP-2 and collagen I gene expression on day 120, whereas the opposite was observed in the nifedipine group.Conclusion: Cyclosporin, phenytoin, and nifedipine led to phased and drug-related gene expression patterns, resulting in impaired collagen metabolism, despite the lack of prominent clinical signs.