962 resultados para Explicit method, Mean square stability, Stochastic orthogonal Runge-Kutta, Chebyshev method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs) are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT) was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC) algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion). Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM) algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE) and better distribution of feature points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, research on exploring the potential of several popular equalization techniques while overcoming their disadvantages has been conducted. First, extensive literature survey on equalization is conducted. The focus has been placed on several popular linear equalization algorithm such as the conventional least-mean-square (LMS) algorithm, the recursive least squares (RLS) algorithm, the fi1tered-X LMS algorithm and their development. The approach in analysing the performance of the filtered-X LMS Algorithm, a heuristic method based on linear time-invariant operator theory is provided to analyse the robust perfonnance of the filtered-X structure. It indicates that the extra filter could enhance the stability margin of the corresponding non filtered X structure. To overcome the slow convergence problem while keeping the simplicity of the LMS based algorithms, an H2 optimal initialization is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the recent success in quantitative analysis of essential fatty acid compositions in a commercial microencapsulated fish oil (?EFO) supplement, we extended the application of portable attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis for rapid determination of total protein contents-the other major component in most commercial ?EFO powders. In contrast to the traditional chromatographic methodology used in a routine amino acid analysis (AAA), the ATR-FTIR spectra of the ?EFO powder can be acquired directly from its original powder form with no requirement of any sample preparation, making the technique exceptionally fast, noninvasive, and environmentally friendly as well as being cost effective and hence eminently suitable for routine use by industry. By optimizing the spectral region of interest and number of latent factors through the developed PLSR strategy, a good linear calibration model was produced as indicated by an excellent value of coefficient of determination R2 = 0.9975, using standard ?EFO powders with total protein contents in the range of 140-450 mg/g. The prediction of the protein contents acquired from an independent validation set through the optimized PLSR model was highly accurate as evidenced through (1) a good linear fitting (R2 = 0.9759) in the plot of predicted versus reference values, which were obtained from a standard AAA method, (2) lowest root mean square error of prediction (11.64 mg/g), and (3) high residual predictive deviation (6.83) ranked in very good level of predictive quality indicating high robustness and good predictive performance of the achieved PLSR calibration model. The study therefore demonstrated the potential application of the portable ATR-FTIR technique when used together with PLSR analysis for rapid online monitoring of the two major components (i.e., oil and protein contents) in finished ?EFO powders in the actual manufacturing setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with the delay-range-dependent stability analysis for neural networks with time-varying delay and Markovian jumping parameters. The time-varying delay is assumed to lie in an interval of lower and upper bounds. The Markovian jumping parameters are introduced in delayed neural networks, which are modeled in a continuous-time along with finite-state Markov chain. Moreover, the sufficient condition is derived in terms of linear matrix inequalities based on appropriate Lyapunov-Krasovskii functionals and stochastic stability theory, which guarantees the globally asymptotic stable condition in the mean square. Finally, a numerical example is provided to validate the effectiveness of the proposed conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionospheric effect is one of the major errors in GPS data processing over long baselines. As a dispersive medium, it is possible to compute its influence on the GPS signal with the ionosphere-free linear combination of L1 and L2 observables, requiring dual-frequency receivers. In the case of single-frequency receivers, ionospheric effects are either neglected or reduced by using a model. In this paper, an alternative for single-frequency users is proposed. It involves multiresolution analysis (MRA) using a wavelet analysis of the double-difference observations to remove the short- and medium-scale ionosphere variations and disturbances, as well as some minor tropospheric effects. Experiments were carried out over three baseline lengths from 50 to 450 km, and the results provided by the proposed method were better than those from dual-frequency receivers. The horizontal root mean square was of about 0.28 m (1 sigma).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Queiroz BC, Cagliari MF, Amorim CF, Sacco IC. Muscle activation during four Pilates core stability exercises in quadruped position. Arch Phys Med Rehabil 2010;91: 86-92.Objective: To compare the activity of stabilizing trunk and hip muscles in 4 variations of Pilates stabilizing exercises in the quadruped position.Design: Repeated-measures descriptive study.Setting: A biomechanics laboratory at a university school of medicine.Participants: Healthy subjects (N=19; mean age +/- SD, 31 +/- 5y; mean weight +/- SD, 60 +/- 11 kg; mean height +/- SD, 166 +/- 9cm) experienced in Pilates routines.Interventions: Surface electromyographic signals of iliocostalis, multifidus, gluteus maximus, rectus abdominis, and external and internal oblique muscles were recorded in 4 knee stretch exercises: retroverted pelvis with flexed trunk; anteverted pelvis with extended trunk; neutral pelvis with inclined trunk; and neutral pelvis with trunk parallel to the ground.Main Outcome Measures: Root mean square values of each muscle and exercise in both phases of hip extension and flexion, normalized by the maximal voluntary isometric contraction.Results: The retroverted pelvis with flexed trunk position led to significantly increased external oblique and gluteus maximus muscle activation. The anteverted pelvis with trunk extension significantly increased multifidus muscle activity. The neutral pelvis position led to significantly lower activity of all muscles. Rectus abdominis muscle activation to maintain body posture was similar in all exercises and was not influenced by position of the pelvis and trunk.Conclusions: Variations in the pelvic and trunk positions in the knee stretch exercises change the activation pattern of the multifidus, gluteus maximus, rectus abdominis, and oblique muscles. The lower level of activation of the rectus abdominis muscle suggests that pelvic stability is maintained in the 4 exercise positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 ±7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p < 0.05. The results revealed that all dancers were able to maintain posterior pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R 2 =0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w-1) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)