995 resultados para Experimental watershed areas
Resumo:
Lake Hendricks is a 54 acre man-made lake that is encompassed by a 1,209 acre watershed. Lake Hendricks is currently on the 303(d) Impaired Waters List for algae and pH impairments due to an abundance of algae growth caused by nutrients being delivered to the lake via 11 separate tile lines draining adjoining cropland areas. In 2009, a Watershed Management Plan was developed in partnership with IDALS and the IDNR 319 programs and $256,500 was awarded to address the nutrient and sediment loading of the lake. Over the past three years a total of $251,000 were spent to implement one grade stabilization structure, two sediment basins, two bioreactors, 700 feet of streambank stabilization, 30.7 acres oftimber stand improvement, and 39.4 acres of Conservation Reserve Program (CRP). A proposed wetland structure and three sediment basins are scheduled to be constructed in the fall of 2011. Current water monitoring data is showing an average of 54% Nitrate (N) loading reductions as a result of the installed BMPs. The District feels further reductions are possible by addressing nutrient management issues in the cropland areas, stabilizing additional streambanks, and improving the surrounding woodland areas. The goal is to reduce N loading by an additional 20% and sediment loading by 50 tlac/yr. The resulting collaborative effort may lead to the future de-listing of Lake Hendricks from the 303(d) Impaired Waters List.
Resumo:
The Competine Creek watershed is a 24,956 acre sub-watershed of Cedar Creek. The creek traverses portions of three counties, slicing through rich and highly productive Southern lowa Drift Plain soils. The watershed is suffering from excessive sediment delivery and frequent flash floods that have been exacerbated by recent high rainfall events. Assessment data reveals soil erosion estimated to be 38,435 tons/year and sediment delivery to the creek at 15,847 tons/year. The Competine Creek Partnership Project is seeking WIRB funds to merge with IDALS-DSC funds and local funds, all targeted for structural Best Management Practices (BMPs) within the 2,760 acres of High Priority Areas (HPAs) identified by the assessment process. The BMPs will include grade stabilization structures, water and sediment basins, tile-outlet terraces, CRP, and urban storm water conservation practices. In addition, Iowa State University Extension-Iowa Learning Farm is investing in the project by facilitating a crop sampling program utilizing fall stalk nitrate, phosphorous index, and soil conditioning index testing. These tests will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce sediment and nutrient delivery to Competine Creek.
Resumo:
Sand Creek is the most significant recreational fishery in Delaware County because of its location to Manchester and Lake Delhi. It is a feeder stream for game fish to the main stem of the Maquoketa River which is limited by the dams at Manchester and Lake Delhi. Sand Creek encompasses 16,045 acres and is dominated by row crop agriculture. It is being impacted by sediment, nutrients and E coli bacteria. Sand Creek will be a good example for habitat impaired watershed. The purpose of this project is to decrease the amount of sediment and nutrients reaching Sand Creek and to increase the habitat in Sand Creek to make it a better spawning and growing area for the fish and the food chain for the fish. The objectives of this project are to reduce sediment delivery by 40%, to improve in-stream habitat on 40% of identified critical areas and implement an information/education program. The project will install 3,800 acres of new no-till planting, 6 water and sediment control basins, 4,000 feet of terraces, 20,000 feet of improved or new waterways, 3,200 feet of streambank/ habitat enhancement, 4,500 feet of livestock exclusion fencing and 6 acres of wetlands.
Resumo:
The Lost Island Lake watershed is located in the prairie pothole region, a region dotted with glacial wetlands and shallow lakes. At 1,180 acres, Lost Island Lake is the state's fifth largest natural lake and its watershed is comprised of nearly 1,000 acres of wetland habitat, including Iowa 's largest natural wetland – Barringer Slough. Unfortunately, Lost Island and its associated wetlands are not functioning to their fullest ecological and water quality potential. In 2002 and 2004, Lost Island Lake was categorized as '·impaired'" on Iowa's Impaired Waters List. Frequent algal blooms and suspended solids drastically increase turbidity levels resulting in its impairment. To investigate these concerns, a two-year study and resulting Water Quality Improvement Plan were completed. The water quality study identified an overabundance of non-native common carp (Cyprinus carpio) in the lake and its surrounding wetlands as a primary cause of impairment. The goal of the Lost Island Lake Watershed Enhancement Project is to restore ecological health to Lost Island Lake and its intricate watershed resulting in improved water quality and a diverse native plant and wildlife community. The purpose of this grant is to obtain funding for the construction of two combination fish barriers and water control structures placed at key locations in the watershed within the Blue Wing Marsh complex. Construction of the fish barriers and water control structures would aid restoration efforts by preventing spawning common carp from entering wetlands in the watershed and establishing the ability to manage water levels in large wetland areas. Water level management is crucial in wetland health and exotic fish control. These two structures are part of a larger construction project that involves a total of four combination fish barriers and water control structures and one additional fish barrier. The entire Lost Island Lake Watershed Enhancement Project is a multi-year project, but the construction phase for the fish barriers and water control structures will be completed before December 31, 2011.
Resumo:
Phase 2 of the Saylor Creek Improvement Project is focused on channel restoration. The existing stream channel is generally incised, running through areas primarily covered with heavy trees, brush and weeds. The ravine ranges from 6 to 20 feet deep through the corridor with very steep slopes in several areas. In two areas storm outlets are undercut or suspended above the channel. Tall undercut, eroded banks exist along several of the outside bends. Sediment deposition on the inside bends limits the cross-section of the channel, increasing flow velocity and forcing this faster flow toward the eroded outside bank. A wide array of practices will need to be implemented to address channel erosion. Improvements will be specifically tailored to address problems observed at each bend. The result will be a channel with a more natural appearance, and reduced use of hard armor and revetment. Some sections will require minimal grading with removal of underbrush for improved maintenance access and more sun exposure, better allowing deep rooted plants and flowers to establish to provide further erosion protection. Straight sections with steep banks will require grading to pull back slopes, increasing the creek's capacity to convey storm flows at slower velocities. Sections with sharp bends will require slope pull back and armor protection. A constructed wetland will collect and treat runoff from a small sub-watershed, before being discharged into the main tributary.
Resumo:
The Muchakinock Creek Watershed Project began in February of 2005 to treat upland soil erosion in the creek that has lead to a 303(d) impairment. The Mahaska SWCD is currently administering this cost-share program to promote terraces, basins and grade stabilization structures. The District is now seeking funding from WIRB to treat specific abandoned mine lands in the Muchakinock Creek Watershed. These areas contribute sediment to the creek at levels second only to agricultural lands as well as acid mine drainage from open pits mines that have been left to decay across the county. The WIRB funding would be used to compliment Federal Abandoned Mine Land (AML) funding in the reclamation of these areas.
Resumo:
Upper Catfish Creek is located in a 9,300-acre watershed that flows through two significant natural resources, Swiss Valley Park and Swiss Valley Nature Preserves, one of the largest nature preserves in the Midwest. According to DNR’s 2002 305(d) report, that portion of the creek within the park and preserve is classified as a Class B(CW) cold water stream of which a portion has naturally reproducing trout (one of only 30 in the state of Iowa with this capability). Urban sprawl is a real threat to the Upper Catfish Creek Watershed. Currently, 10% of the watershed is residential, but 27% is zoned residential or commercial. The watershed is near Dubuque city limits but the jurisdiction is in the county. Differing criteria for land development between city and county jurisdictions further entices developers to build in outlying areas. County leaders agree there is more that needs to be done and will work with municipalities on uniformity of regulations and follow-up measures. We propose to set up key urban conservation practice models that will address storm water runoff and water quality which can be learned about and viewed by city and county officials, engineers, developers, etc. This would be part of a larger initiative including an educational campaign, inter-jurisdictional planning, the development of a land use GIS database, and agricultural conservation practices. The successes coming out of and learned about this watershed will serve as a model to spread county-wide.
Resumo:
Price Creek is a 13 mile long stream located in SE Benton County and the NE corner of Iowa County. It ends below the village of Amana where it flows into the Iowa River. The Iowa and Benton County Soil & Water Conservation Districts (SWCDs) applied (and were tentatively approved) for 319/WPF/WSPF funding to treat livestock and water quality issues in this watershed over the next three years. That project’s funds were allocated for a Project Coordinator, information and education activities, and cost share for Best Management Practices (BMPs) directed toward livestock issues and nutrient issues. Soil erosion and sedimentation are also problems in this 18,838 acre watershed. It is 64% HEL (highly erodible land) and 58% of it is cropped. With a coordinator working with Price Creek producers, this would be an excellent time to also address the soil loss and sedimentation issues in this watershed. We will offer additional cost share incentives on BMPs targeting soil erosion on the critical areas we’ve identified. We are applying to IWIRB for additional funding to allow us to cost share specific BMPs up to 75% to treat soil loss in these critical areas of the Price Creek Watershed.
Resumo:
A water quality resource concern has come to the forefront in the Upper Miller Creek watershed in Black Hawk County after five to seven inches of rain fell on the area on May 22nd and 23rd of 2004 and unprecedented amounts of soil and organic debris were washed from cultivated areas, clogging most culverts and roadside ditches. The quantity of soil deposited in ditches gave a good indication of the amounts that were transported into the stream. The estimated total cost to Black Hawk County for cleanup and repair within the road right-of-way was $345,000. There were undetermined environmental costs incurred when the incredibly high volumes of soil washed from the fields into Miller Creek which flows directly into the Cedar River that is identified by the Department of Natural Resources as an impaired water body. The Upper Miller Creek Watershed Project is an innovative, collaborative project intended to meet a specific need identified by a local steering committee made up of concerned community agencies and local landowners. Led by the Soil and Water Conservation District and the Black Hawk County Board of Supervisors, the Miller Creek Watershed Project seeks to reduce soil erosion, improve water quality, and reduce county road infrastructure cost by implementing conservation practices, reducing nutrient and pesticide use and improving wildlife habitat.
Resumo:
Two sections of the Yellow River have been named to the State of Iowa’s 303d list of impaired waters. The listing reflects streams with pollution problems linked to habitat alterations, in addition to those with potential disease causing bacteria, viruses and parasites. This fact, combined with local knowledge of water quality problems, shows the need for land treatment practices and habitat improvement measures. This project would target the Yellow River watershed, which totals approximately 49,800 acres. Areas that drain directly into the Yellow River mainstream will be targeted. Individually, these areas are too small to be considered sub-watersheds. This project will assess the drainage areas for active gullies and prioritize grade stabilization structures based upon severity and impact on the fishery. Funding would be utilized to target high priority grade stabilization structure sites and provide cost-share for those projects. A prerequisite for cost-share allocation is 75% of the land contributing to the drainage area must have some form of treatment in place. The Allamakee SWCD has received an EPA Region 7 Grant toward grade stabilization structures in the same area. Landowners have indicated that 75% cost-share is necessary to implement practices. To meet this request, the EPA funding would be used at a 15% cost-share rate if matched with 60% cost-share from WIRB funding. If matched with Federal EQIP funds, 25% of funds obtained from WIRB would be used. If other funds were depleted, WIRB funds would be utilized for the entire 75% cost-share.
Resumo:
Farmers Creek is a moderately flowing stream that winds through seventeen miles of central Jackson County, encompassing a watershed area of 30,590 acres. Due to nutrient loading and sedimentation, the stream was placed on Iowa’s 303(d) List of Impaired Waters in 2002. A three year grant project was initiated in January 2005 to reduce both sediment delivery and phosphorus levels by 40% in critical areas along the stream corridor. Over thirty-five BMP’s were started in the first nine months of this project. Funding through WIRB is being requested specifically for streambank stabilization and protection projects not covered by other cost-share programs. Innovative project designs and techniques will be installed and act as demonstration sites. Projects may include jetties, weirs, cedar revetments, cattle crossings, and fencing. To assist in excluding cattle from the stream, watering systems such as slingpumps, pasture pumps, or water rams will be installed, in conjunction with filter strips and riparian buffers.
Resumo:
This project proposes a unique approach to addressing one of the more challenging issues facing efforts to protect water quality in Rathbun Lake; reducing sediment and phosphorus delivery from land on which best management practices (BMPs) will not be applied. This project will construct ten impoundments at key locations in the watershed to reduce the annual delivery of 2,970 tons of sediment and 12,100 pounds of phosphorus to Rathbun Lake. Features of this approach are: (a) impoundments will be constructed at sites below areas with high concentrations of priority land that has the greatest potential to deliver sediment and phosphorus to Rathbun Lake and on which landowners are unable or unwilling to apply BMPs and (b) strategically placed, large impoundments can be a cost effective means of reducing the sediment and phosphorus delivered to Rathbun Lake from priority land on which BMPs will not be applied. This project will significantly enhance the success of efforts underway in the Rathbun Lake Special Project as it addresses a critical water quality protection need that is not being met by current Special Project activities.
Resumo:
This project will include the construction of four separate drainage and retention facilities to handle urban runoff that currently flows directly into Lake Storm Lake. These facilities will filter storm water from approximately 503 acres of urban land including two large industrial users Tyson Fresh Meats and Sara Lee Turkey Processing as well as other commercial and residential sections that currently go directly to the lake without filtration. Specifically the project involves the construction of a two cell dry bottomed detention pond system, construction of two rain gardens/bio retention areas, construction of rain gardens along storm water intakes on Highway 7, and construction of a porous rock detention area. The completed project will provide for cleaner water outleting to the fake in an area that has the largest potential for pollutants to enter the lake. This project is being done in conjunction with other watershed improvements including two additional rain gardens already in place and a multi-year dredging effort of Lake Storm Lake that will be starting its fifth year in 2006. Improvements in the rural water shed are also taking place with the help of a watershed coordinator. Some of these projects include buffer strips and filter slips along the waterways in the watershed.
Resumo:
Farmers Creek is a moderately flowing stream that winds through seventeen miles of central Jackson County, encompassing a watershed area of 30,590 acres. Due to nutrient loading and sedimentation, the stream was placed on Iowa’s 303(d) List of Impaired Waters in 2002. A three year grant project was initiated in January 2005 to reduce both sediment delivery and phosphorus levels by 40% in critical areas along the stream corridor. Over thirty-five BMP’s were started in the first nine months of this project. Funding through WIRB is being requested specifically for streambank stabilization and protection projects not covered by other cost-share programs. Innovative project designs and techniques will be installed and act as demonstration sites. Projects may include jetties, weirs, cedar revetments, cattle crossings, and fencing. To assist in excluding cattle from the stream, watering systems such as slingpumps, pasture pumps, or water rams will be installed, in conjunction with filter strips and riparian buffers.
Resumo:
Lake Macbride is considered to be one of the top four lakes for fishing in the state of Iowa. It is widely used by the public and contributes significant economic benefits to the county. Lake Macbride is situated in the North Corridor which is one of the fastest growing areas in the state. The lake has a surface area of 940 acres and drains 16,205 acres. Lake Macbride is on the Iowa 303(d) list for excessive sediments and nutrients. In 2001, Lake Macbride State Park received over 2.5 million dollars from the Marine Fuel Tax and Fish and Wildlife Trust to install 2 silt basins and stabilize over 12 miles of shoreline in the lake. Also in 2001, the Johnson County SWCD received a WSPF allocation from DSC to address agriculture and urban runoff issues in the watershed. Section 319 funding was received in 2002 to continue watershed efforts to the present. A watershed assessment was completed in 2003 to guide watershed activities. In 2005, a TMDL was completed for the lake. Since 2001, over $645,000 dollars has been spent by landowners and funding partners to install conservation practices in the watershed. Watershed efforts have resulted in the reduction of over 4200 tons of soils from being delivered into Lake Macbride. Nutrient reductions have also occurred from the development of nutrient management plans on 2000 acres. The District is in the process of wrapping up watershed efforts on private land. A series of 13 structures is planned to be installed in the State Park over the next several years. One of the last remaining items that still needs addressed is 1,400 feet of eroding shoreline adjacent to Lake Macbride along Cottage Reserve Road. The road is under the jurisdiction of the Johnson County Board of Supervisors. Both the Board of Supervisors and the IDNR are willing to contribute substantial dollars to address the 250 tons of soil that are being directly delivered to Lake Macbride each year.