959 resultados para Expansion palatine
Resumo:
BACKGROUND: Activation of innate pattern-recognition receptors promotes CD4+ T-cell-mediated autoimmune myocarditis and subsequent inflammatory cardiomyopathy. Mechanisms that counterregulate exaggerated heart-specific autoimmunity are poorly understood. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice by immunization with α-myosin heavy chain peptide and complete Freund's adjuvant. Together with interferon-γ, heat-killed Mycobacterium tuberculosis, an essential component of complete Freund's adjuvant, converted CD11b(hi)CD11c(-) monocytes into tumor necrosis factor-α- and nitric oxide synthase 2-producing dendritic cells (TipDCs). Heat-killed M. tuberculosis stimulated production of nitric oxide synthase 2 via Toll-like receptor 2-mediated nuclear factor-κB activation. TipDCs limited antigen-specific T-cell expansion through nitric oxide synthase 2-dependent nitric oxide production. Moreover, they promoted nitric oxide synthase 2 production in hematopoietic and stromal cells in a paracrine manner. Consequently, nitric oxide synthase 2 production by both radiosensitive hematopoietic and radioresistant stromal cells prevented exacerbation of autoimmune myocarditis in vivo. CONCLUSIONS: Innate Toll-like receptor 2 stimulation promotes formation of regulatory TipDCs, which confine autoreactive T-cell responses in experimental autoimmune myocarditis via nitric oxide. Therefore, activation of innate pattern-recognition receptors is critical not only for disease induction but also for counterregulatory mechanisms, protecting the heart from exaggerated autoimmunity.
Resumo:
The number of cases of visceral and cutaneous leishmaniasis is increasing globally at an alarming rate irrespective of the region and the leishmaniases are amongst the top emergent diseases in spite of control measures. In the present review attention is drawn to some of the reasons for this. The leishmaniases have expanded beyond their natural ecotopes due to the ecological chaos caused by man and this in turn affects the levels of his exposure to the vectors. Examples of how different phenomana (such as war, civilian migration, immuno-suppression caused by medication and viral infections, globalization of work and leisure and transmission outside endemic areas) contribute to the spread and increase of the disease are discussed.
Resumo:
The apicomplexan parasite Toxoplasma gondii is unusual in being able to infect almost any cell from almost any warm-blooded animal it encounters. This extraordinary host-range contrasts with its far more particular cousins such as the various species of the malaria parasite Plasmodium where each species of parasite has a single genus or even species of host that it can infect. Genetic and genomic studies have revealed a key role for a number of gene families in how Toxoplasma invades a host cell, modulates gene expression of that cell and successfully evades the resulting immune response. In this review, I will explore the hypothesis that a combination of sexual recombination and expansion of host range may be the major driving forces in the evolution of some of these gene families and the specific genes they encompass. These ideas stem from results and thoughts published by several labs in the last few years but especially recent papers on the role of different forms of rhoptry proteins in the relative virulence of F1 Toxoplasma progeny in a particular host species (mice).
Resumo:
Es defineix l'expansió general d'operadors com una combinació lineal de projectors i s'exposa la seva aplicació generalitzada al càlcul d'integrals moleculars. Com a exemple numèric, es fa l'aplicació al càlcul d'integrals de repulsió electrònica entre quatre funcions de tipus s centrades en punts diferents, i es mostren tant resultats del càlcul com la definició d'escalat respecte a un valor de referència, que facilitarà el procés d'optimització de l'expansió per uns paràmetres arbitraris. Es donen resultats ajustats al valor exacte
Resumo:
Intraspecific coalitional aggression between groups of individuals is a widespread trait in the animal world. It occurs in invertebrates and vertebrates, and is prevalent in humans. What are the conditions under which coalitional aggression evolves in natural populations? In this article, I develop a mathematical model delineating conditions where natural selection can favor the coevolution of belligerence and bravery between small-scale societies. Belligerence increases an actor's group probability of trying to conquer another group and bravery increase the actors's group probability of defeating an attacked group. The model takes into account two different types of demographic scenarios that may lead to the coevolution of belligerence and bravery. Under the first, the fitness benefits driving the coevolution of belligerence and bravery come through the repopulation of defeated groups by fission of victorious ones. Under the second demographic scenario, the fitness benefits come through a temporary increase in the local carrying capacity of victorious groups, after transfer of resources from defeated groups to victorious ones. The analysis of the model suggests that the selective pressures on belligerence and bravery are stronger when defeated groups can be repopulated by victorious ones. The analysis also suggests that, depending on the shape of the contest success function, costly bravery can evolve in groups of any size.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Pregnancy and obesity are frequently associated with diminished insulin sensitivity, which is normally compensated for by an expansion of the functional β cell mass that prevents chronic hyperglycemia and development of diabetes mellitus. The molecular basis underlying compensatory β cell mass expansion is largely unknown. We found in rodents that β cell mass expansion during pregnancy and obesity is associated with changes in the expression of several islet microRNAs, including miR-338-3p. In isolated pancreatic islets, we recapitulated the decreased miR-338-3p level observed in gestation and obesity by activating the G protein-coupled estrogen receptor GPR30 and the glucagon-like peptide 1 (GLP1) receptor. Blockade of miR-338-3p in β cells using specific anti-miR molecules mimicked gene expression changes occurring during β cell mass expansion and resulted in increased proliferation and improved survival both in vitro and in vivo. These findings point to a major role for miR-338-3p in compensatory β cell mass expansion occurring under different insulin resistance states.
Resumo:
Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.
Resumo:
The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.
Resumo:
Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.
Resumo:
The distribution range of Lactuca serriola, a species native to the summer-dry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe. Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time. Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non-climatic influences of global change that have contributed to its rapid spread. Main conclusions The observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.