550 resultados para Execute
Resumo:
This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.
Resumo:
eScience is an umbrella concept which covers internet technologies, such as web service orchestration that involves manipulation and processing of high volumes of data, using simple and efficient methodologies. This concept is normally associated with bioinformatics, but nothing prevents the use of an identical approach for geoinfomatics and OGC (Open Geospatial Consortium) web services like WPS (Web Processing Service). In this paper we present an extended WPS implementation based on the PyWPS framework using an automatically generated WSDL (Web Service Description Language) XML document that replicates the WPS input/output document structure used during an Execute request to a server. Services are accessed using a modified SOAP (Simple Object Access Protocol) interface provided by PyWPS, that uses service and input/outputs identifiers as element names. The WSDL XML document is dynamically generated by applying XSLT (Extensible Stylesheet Language Transformation) to the getCapabilities XML document that is generated by PyWPS. The availability of the SOAP interface and WSDL description allows WPS instances to be accessible to workflow development software like Taverna, enabling users to build complex workflows using web services represented by interconnecting graphics. Taverna will transform the visual representation of the workflow into a SCUFL (Simple Conceptual Unified Flow Language) based XML document that can be run internally or sent to a Taverna orchestration server. SCUFL uses a dataflow-centric orchestration model as opposed to the more commonly used orchestration language BPEL (Business Process Execution Language) which is process-centric.
Resumo:
The emergence of Grid computing technology has opened up an unprecedented opportunity for biologists to share and access data, resources and tools in an integrated environment leading to a greater chance of knowledge discovery. GeneGrid is a Grid computing framework that seamlessly integrates a myriad of heterogeneous resources spanning multiple administrative domains and locations. It provides scientists an integrated environment for the streamlined access of a number of bioinformatics programs and databases through a simple and intuitive interface. It acts as a virtual bioinformatics laboratory by allowing scientists to create, execute and manage workflows that represent bioinformatics experiments. A number of cooperating Grid services interact in an orchestrated manner to provide this functionality. This paper gives insight into the details of the architecture, components and implementation of GeneGrid.
Resumo:
This paper presents a novel approach based on the use of evolutionary agents for epipolar geometry estimation. In contrast to conventional nonlinear optimization methods, the proposed technique employs each agent to denote a minimal subset to compute the fundamental matrix, and considers the data set of correspondences as a 1D cellular environment, in which the agents inhabit and evolve. The agents execute some evolutionary behavior, and evolve autonomously in a vast solution space to reach the optimal (or near optima) result. Then three different techniques are proposed in order to improve the searching ability and computational efficiency of the original agents. Subset template enables agents to collaborate more efficiently with each other, and inherit accurate information from the whole agent set. Competitive evolutionary agent (CEA) and finite multiple evolutionary agent (FMEA) apply a better evolutionary strategy or decision rule, and focus on different aspects of the evolutionary process. Experimental results with both synthetic data and real images show that the proposed agent-based approaches perform better than other typical methods in terms of accuracy and speed, and are more robust to noise and outliers.
Resumo:
An important theory of attention suggests that there are three separate networks that execute discrete cognitive functions. The 'alerting' network acquires and maintains an alert state, the 'orienting' network selects information from sensory input and the 'conflict' network resolves conflict that arises between potential responses. This theory holds promise for dissociating discrete patterns of cognitive impairment in disorders where attentional deficits may often be subtle, such as in attention deficit hyperactivity disorder (ADHD).
Resumo:
Multi-threaded processors execute multiple threads concurrently in order to increase overall throughput. It is well documented that multi-threading affects per-thread performance but, more importantly, some threads are affected more than others. This is especially troublesome for multi-programmed workloads. Fairness metrics measure whether all threads are affected equally. However defining equal treatment is not straightforward. Several fairness metrics for multi-threaded processors have been utilized in the literature, although there does not seem to be a consensus on what metric does the best job of measuring fairness. This paper reviews the prevalent fairness metrics and analyzes their main properties. Each metric strikes a different trade-off between fairness in the strict sense and throughput. We categorize the metrics with respect to this property. Based on experimental data for SMT processors, we suggest using the minimum fairness metric in order to balance fairness and throughput.
Resumo:
Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.
Resumo:
The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
NuGO, the European Nutrigenomics Organization, utilizes 31 powerful computers for, e.g., data storage and analysis. These so-called black boxes (NBXses) are located at the sites of different partners. NuGO decided to use GenePattern as the preferred genomic analysis tool on each NBX. To handle the custom made Affymetrix NuGO arrays, new NuGO modules are added to GenePattern. These NuGO modules execute the latest Bioconductor version ensuring up-to-date annotations and access to the latest scientific developments. The following GenePattern modules are provided by NuGO: NuGOArrayQualityAnalysis for comprehensive quality control, NuGOExpressionFileCreator for import and normalization of data, LimmaAnalysis for identification of differentially expressed genes, TopGoAnalysis for calculation of GO enrichment, and GetResultForGo for retrieval of information on genes associated with specific GO terms. All together, these NuGO modules allow comprehensive, up-to-date, and user friendly analysis of Affymetrix data. A special feature of the NuGO modules is that for analysis they allow the use of either the standard Affymetrix or the MBNI custom CDF-files, which remap probes based on current knowledge. In both cases a .chip-file is created to enable GSEA analysis. The NuGO GenePattern installations are distributed as binary Ubuntu (.deb) packages via the NuGO repository.
Resumo:
Task dataflow languages simplify the specification of parallel programs by dynamically detecting and enforcing dependencies between tasks. These languages are, however, often restricted to a single level of parallelism. This language design is reflected in the runtime system, where a master thread explicitly generates a task graph and worker threads execute ready tasks and wake-up their dependents. Such an approach is incompatible with state-of-the-art schedulers such as the Cilk scheduler, that minimize the creation of idle tasks (work-first principle) and place all task creation and scheduling off the critical path. This paper proposes an extension to the Cilk scheduler in order to reconcile task dependencies with the work-first principle. We discuss the impact of task dependencies on the properties of the Cilk scheduler. Furthermore, we propose a low-overhead ticket-based technique for dependency tracking and enforcement at the object level. Our scheduler also supports renaming of objects in order to increase task-level parallelism. Renaming is implemented using versioned objects, a new type of hyper object. Experimental evaluation shows that the unified scheduler is as efficient as the Cilk scheduler when tasks have no dependencies. Moreover, the unified scheduler is more efficient than SMPSS, a particular implementation of a task dataflow language.
Resumo:
Larsen and Toubro (L&T) Limited is India’s largest construction conglomerate. L&T’s expertise is harnessed to execute high value projects that demand adherence to stringent timelines in a scenario where disparate disciplines of engineering are required to be coordinated on a critical path. However, no company can acquire such a feat without systematic management of its human resource. An investigation on the human resource management practices in orienting L&T’s success can help to identify some of the ethical human resource practices, especially in the context of Indian market. Accordingly, a well-designed employee satisfaction survey was conducted for assessment of the HRM practices being followed in L&T. Unlike other companies, L&T aims to meet the long-term needs of its employees rather than short-term needs. There were however few areas of concerns, such as yearly appraisal system and equality to treat the employees. It is postulated that the inequality to treat the male and female employees is primarily a typical stereotype due to the fact that construction is conventionally believed to be a male dominant activity. A periodic survey intended to provide 360° feedback system can help to avoid such irregularities. This study is thus expected to provide healthy practices of HRM to nurture the young talents of India. This may help them to evaluate their decisions by analyzing the complex relationship between HRM practices and output of an organization.
Resumo:
Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.
Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.
Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.
Resumo:
In this paper, we propose a design paradigm for energy efficient and variation-aware operation of next-generation multicore heterogeneous platforms. The main idea behind the proposed approach lies on the observation that not all operations are equally important in shaping the output quality of various applications and of the overall system. Based on such an observation, we suggest that all levels of the software design stack, including the programming model, compiler, operating system (OS) and run-time system should identify the critical tasks and ensure correct operation of such tasks by assigning them to dynamically adjusted reliable cores/units. Specifically, based on error rates and operating conditions identified by a sense-and-adapt (SeA) unit, the OS selects and sets the right mode of operation of the overall system. The run-time system identifies the critical/less-critical tasks based on special directives and schedules them to the appropriate units that are dynamically adjusted for highly-accurate/approximate operation by tuning their voltage/frequency. Units that execute less significant operations can operate at voltages less than what is required for correct operation and consume less power, if required, since such tasks do not need to be always exact as opposed to the critical ones. Such scheme can lead to energy efficient and reliable operation, while reducing the design cost and overheads of conventional circuit/micro-architecture level techniques.
Resumo:
Hardware designers and engineers typically need to explore a multi-parametric design space in order to find the best configuration for their designs using simulations that can take weeks to months to complete. For example, designers of special purpose chips need to explore parameters such as the optimal bitwidth and data representation. This is the case for the development of complex algorithms such as Low-Density Parity-Check (LDPC) decoders used in modern communication systems. Currently, high-performance computing offers a wide set of acceleration options, that range from multicore CPUs to graphics processing units (GPUs) and FPGAs. Depending on the simulation requirements, the ideal architecture to use can vary. In this paper we propose a new design flow based on OpenCL, a unified multiplatform programming model, which accelerates LDPC decoding simulations, thereby significantly reducing architectural exploration and design time. OpenCL-based parallel kernels are used without modifications or code tuning on multicore CPUs, GPUs and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL for mapping the simulations into FPGAs. To the best of our knowledge, this is the first time that a single, unmodified OpenCL code is used to target those three different platforms. We show that, depending on the design parameters to be explored in the simulation, on the dimension and phase of the design, the GPU or the FPGA may suit different purposes more conveniently, providing different acceleration factors. For example, although simulations can typically execute more than 3x faster on FPGAs than on GPUs, the overhead of circuit synthesis often outweighs the benefits of FPGA-accelerated execution.