983 resultados para Evolutionary adaptation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. Results: We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. Conclusion: To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although oceanwarming and acidification are recognized as two major anthropogenic perturbations of today's oceanswe know very little about how marine phytoplankton may respond via evolutionary change.We tested for adaptation to ocean warming in combination with ocean acidification in the globally important phytoplankton species Emiliania huxleyi. Temperature adaptation occurred independently of ocean acidifcation levels. Exponential growth rates were were up to 16% higher in populations adapted for one year to warming when assayed at their upper thermal tolerance limit. Particulate inorganic (PIC) and organic (POC) carbon production was restored to values under present-day ocean conditions, owing to adaptive evolution, and were 101% and 55% higher under combined warming and acidification, respectively, than in non-adapted controls. Cells also evolved to a smaller size while they recovered their initial PIC:POC ratio even under elevated CO2. The observed changes in coccolithophore growth, calcite and biomass production, cell size and elemental composition demonstrate the importance of evolutionary processes for phytoplankton performance in a future ocean. At the end of a 1-yr temperature selection phase, we conducted a reciprocal assay experiment in which temperature-adapted asexual populations were compared to the respective non-adapted control populations under high temperature, and vice versa (1. Assay Data, Dataset #835336). Mean exponential growth rates ? in treatments subjected to high temperature increased rapidly under all high temperature-CO2 treatment combinations during the temperature selection phase (2. time series, Dataset #835339).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding the degree-constrained minimum spanning tree (DCMST) of a graph is a widely studied NP-hard problem. One of its most important applications is network design. Here we deal with a new variant of the DCMST problem, which consists of finding not only the degree- but also the role-constrained minimum spanning tree (DRCMST), i.e., we add constraints to restrict the role of the nodes in the tree to root, intermediate or leaf node. Furthermore, we do not limit the number of root nodes to one, thereby, generally, building a forest of DRCMSTs. The modeling of network design problems can benefit from the possibility of generating more than one tree and determining the role of the nodes in the network. We propose a novel permutation-based representation to encode these forests. In this new representation, one permutation simultaneously encodes all the trees to be built. We simulate a wide variety of DRCMST problems which we optimize using eight different evolutionary computation algorithms encoding individuals of the population using the proposed representation. The algorithms we use are: estimation of distribution algorithm, generational genetic algorithm, steady-state genetic algorithm, covariance matrix adaptation evolution strategy, differential evolution, elitist evolution strategy, non-elitist evolution strategy and particle swarm optimization. The best results are for the estimation of distribution algorithms and both types of genetic algorithms, although the genetic algorithms are significantly faster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgements. This work was funded by Natural Environment Research Council Fellowship NE/J019151/1 and by institutional funding from within the University of Aberdeen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organisms producing resting stages provide unique opportunities for reconstructing the genetic history of natural populations. Diapausing seeds and eggs often are preserved in large numbers, representing entire populations captured in an evolutionary inert state for decades and even centuries. Starting from a natural resting egg bank of the waterflea Daphnia, we compare the evolutionary rates of change in an adaptive quantitative trait with those in selectively neutral DNA markers, thus effectively testing whether the observed genetic changes in the quantitative trait are driven by natural selection. The population studied experienced variable and well documented levels of fish predation over the past 30 years and shows correlated genetic changes in phototactic behavior, a predator-avoidance trait that is related to diel vertical migration. The changes mainly involve an increased plasticity response upon exposure to predator kairomone, the direction of the changes being in agreement with the hypothesis of adaptive evolution. Genetic differentiation through time was an order of magnitude higher for the studied behavioral trait than for neutral markers (DNA microsatellites), providing strong evidence that natural selection was the driving force behind the observed, rapid, evolutionary changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overview. Questions about the interface between the multilateral climate regime embodied in the Kyoto Protocol and the multilateral trade regime embodied in the World Trade Organisation (WTO) have become especially timely since the fall of 2001. At that time, ministerial-level meetings in Marrakech and Doha agreed to advance the agendas, respectively, for the implementation of the Kyoto Protocol and for negotiations on further agreements at the WTO. There have been concerns that each of these multilateral arrangements could constrain the effectiveness of the other, and these concerns will become more salient with the entry into force of the Kyoto Protocol. There are questions about whether and how the rights and obligations of the members of the WTO and the parties to the Protocol may conflict. Of particular concern is whether provisions in the Protocol, as well as government policies and business activities undertaken in keeping with those provisions, may conflict with the WTO non-discrimination principles of national treatment and most-favoured nation treatment. The WTO agreements that are potentially relevant to climate change issues include many of the individual Uruguay Round agreements and subsequent agreements as well. The principal elements of the Kyoto Protocol that are particularly relevant are its provisions concerning emissions trading, the Clean Development Mechanism, Joint Implementation, enforcement, and parties’ policies and measures. In combination, therefore, there are numerous potential points of intersection between the elements of the Kyoto Protocol and the WTO agreements. Previous studies have clarified many issues, as they have focused on particular aspects of the regimes’ relationships. Yet, some analyses suggest that the two regimes are largely compatible and even mutually reinforcing, while others suggest that there are significant conflicts between them. Those and other studies are referenced in the ‘suggestions for further reading’ section at the end of the paper.1 The present paper seeks to expand on those studies by providing additional breadth and depth to understanding of the issues. The analysis gives special attention to key issues on the agenda – i.e. issues that are particularly problematic because of the likelihood of occurrence of specific conflicts and the significance of their economic and/or political consequences. The paper adopts a modified ‘triage’ approach, which classifies points of intersection as (a) highly problematic and clearly in need of further attention, (b) perhaps problematic but less urgent, and (c) apparently not problematic, at least at this point in time. The principal conclusions are that: · The missions and objectives of the two regimes are largely compatible, and their operations are potentially mutually reinforcing in several respects. · Some provisions of the multilateral agreements that may superficially seem at odds are not likely to become particularly problematic in practice. · ‘Domestic policies and measures’ that governments may undertake in the context of the Protocol could pose difficult issues in the context of WTO dispute cases. · Recent WTO agreements and dispute cases acknowledge the legitimacy of the ‘precautionary principle’ and are thus consistent with the environmental protection objectives of the Protocol. · The relative newness of the climate regime creates opportunities for institutional adaptation, as compared with the constraints of tradition in the trade-investment regime. · The prospect of largely independent evolutionary paths for the two regimes poses a series of issues about future international regime design and management, which may require new institutional arrangements. In sum, the present paper thus finds that although there are some areas of interaction that are problematic, the two regimes may nevertheless co-exist in relative harmony in other respects –more like ‘neighbours’ than either ‘friends’ or ‘foes’, as Krist (2001) has suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the genetic basis of clinal adaptation by determining the evolutionary response of life-history traits to laboratory natural selection along a gradient of thermal stress in Drosophila serrata. A gradient of heat stress was created by exposing larvae to a heat stress of 36degrees for 4 hr for 0, 1, 2, 3, 4, or 5 days of larval development, with the remainder of development taking place at 25degrees. Replicated lines were exposed to each level of this stress every second generation for 30 generations. At the end of selection, we conducted a complete reciprocal transfer experiment where all populations were raised in all environments, to estimate the realized additive genetic covariance matrix among clinal environments in three life-history traits. Visualization of the genetic covariance functions of the life-history traits revealed that the genetic correlation between environments generally declined as environments became more different and even became negative between the most different environments in some cases. One exception to this general pattern was a life-history trait representing the classic trade-off between development time and body size, which responded to selection in a similar genetic fashion across all environments. Adaptation to clinal environments may involve a number of distinct genetic effects along the length of the cline, the complexity of which may not be fully revealed by focusing primarily on populations at the ends of the cline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine invertebrates representing at least five phyla are symbiotic with dinoflagellates from the genus Symbiodinium. This group of single-celled protists was once considered to be a single pandemic species, Symbiodinium microadriaticum. Molecular investigations over the past 25 years have revealed, however, that Symbiodinium is a diverse group of organisms with at least eight (A-H) divergent clades that in turn contain multiple molecular subclade types. The diversity within this genus may subsequently determine the response of corals to normal and stressful conditions, leading to the proposal that the symbiosis may impart unusually rapid adaptation to environmental change by the metazoan host. These questions have added importance due to the critical challenges that corals and the reefs they build face as a consequence of current rapid climate change. This review outlines our current understanding of the diverse genus Symbiodinium and explores the ability of this genus and its symbioses to adapt to rapid environmental change. (c) 2006 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.