737 resultados para Evidence Based Design (EBD)
Resumo:
This paper presents a global-optimisation frame-work for the design of a manipulator for harvesting capsicum(peppers) in the field. The framework uses a simulated capsicum scenario with automatically generated robot models based on DH parameters. Each automatically generated robot model is then placed in the simulated capsicum scenario and the ability of the robot model to get to several goals (capsicum with varying orientations and positions) is rated using two criteria:the length of a collision-free path and the dexterity of the end-effector. These criteria form the basis of the objective function used to perform a global optimisation. The paper shows a preliminary analysis and results that demonstrate the potential of this method to choose suitable robot models with varying degrees of freedom.
Resumo:
The demand for cancer care is growing due to the increasing incidence of cancer and the improved effectiveness of cancer treatments. It is important that cancer nurses continue to improve patient outcomes through research and the use of evidence in practice development, education and policy. This paper describes a case report of a collaborative academic healthcare model that creates capacity for cancer nursing research and evidence-based practice. The Cancer Nursing Professorial Precinct is a strategic collaboration between the Royal Brisbane and Women’s Hospital (RBWH) and Queensland University of Technology (QUT), in Brisbane Australia. The outcomes of this initiative has been remarkable. The principles and strategies used in this initiative may be useful for cancer services in other countries.
Resumo:
Foot problems complicating diabetes are a source of major patient suffering and societal costs. Investing in evidence-based, internationally appropriate diabetic foot care guidance is likely among the most cost-effective forms of healthcare expenditure, provided it is goal-focused and properly implemented. The International Working Group on the Diabetic Foot (IWGDF) has been publishing and updating international Practical Guidelines since 1999. The 2015 updates are based on systematic reviews of the literature, and recommendations are formulated using the Grading of Recommendations Assessment Development and Evaluation system. As such, we changed the name from 'Practical Guidelines' to 'Guidance'. In this article we describe the development of the 2015 IWGDF Guidance documents on prevention and management of foot problems in diabetes. This Guidance consists of five documents, prepared by five working groups of international experts. These documents provide guidance related to foot complications in persons with diabetes on: prevention; footwear and offloading; peripheral artery disease; infections; and, wound healing interventions. Based on these five documents, the IWGDF Editorial Board produced a summary guidance for daily practice. The resultant of this process, after reviewed by the Editorial Board and by international IWGDF members of all documents, is an evidence-based global consensus on prevention and management of foot problems in diabetes. Plans are already under way to implement this Guidance. We believe that following the recommendations of the 2015 IWGDF Guidance will almost certainly result in improved management of foot problems in persons with diabetes and a subsequent worldwide reduction in the tragedies caused by these foot problems.
Resumo:
There is growing evidence, especially in the USA and UK, that creative writing can form an important part of the recovery experience of people affected by severe mental illness. In this chapter, I consider theoretical models that explain how creative writing might contribute to recovery, and discuss the potential for creative writing in psychosocial rehabilitation. It is argued that the rehabilitation benefits of creative writing might be optimized through focus on process and technique in writing, rather than expression or content alone, and that consequently, the involvement of professional writers might be important. I will explore the recent history of theoretical frameworks and explanatory models that link creative writing and recovery, and examine such empirical evidence as is available on the contribution of creative writing to recovery from severe mental illness.
Resumo:
Antitubercular treatment is directed against actively replicating organisms. There is an urgent need to develop drugs targeting persistent subpopulations of Mycobacterium tuberculosis. The DevR response regulator is believed to play a key role in bacterial dormancy adaptation during hypoxia. We developed a homology-based model of DevR and used it for the rational design of inhibitors. A phenylcoumarin derivative (compound 10) identified by in silico pharmacophore-based screening of 2.5 million compounds employing protocols with some novel features including a water-based pharmacophore query, was characterized further. Compound 10 inhibited DevR binding to target DNA, down-regulated dormancy genes transcription, and drastically reduced survival of hypoxic but not nutrient-starved dormant bacteria or actively growing organ ` isms. Our findings suggest that compound 10 ``locks'' DevR in an inactive conformation that is unable to bind cognate DNA and induce the dormancy regulon. These results provide proof-of-concept for DevR as a novel target to develop molecules with sterilizing activity against tubercle bacilli.
Resumo:
This chapter traces the history of evidence-based practice (EBP) from its roots in evidence-based medicine to contemporary thinking about its usefulness to public health practice. It defines EBP and differentiates it from ‘evidence-based medicine’, ‘evidence-based policy’ and ‘evidence-based healthcare’. As it is important to understand the subjective nature of knowledge and the research process, this chapter describes the nature and production of knowledge. This chapter considers the necessary skills for EBP, and the processes of attaining the necessary evidence. We examine the barriers and facilitators to identifying and implementing ‘best practice’, and when EBP is appropriate to use. There is a discussion about the limitations of EBP and the use of other information sources to guide practice, and concluding information about the application of evidence to guide policy and practice.
Resumo:
In this study, the stability of anchored cantilever sheet pile wall in sandy soils is investigated using reliability analysis. Targeted stability is formulated as an optimization problem in the framework of an inverse first order reliability method. A sensitivity analysis is conducted to investigate the effect of parameters influencing the stability of sheet pile wall. Backfill soil properties, soil - steel pile interface friction angle, depth of the water table from the top of the sheet pile wall, total depth of embedment below the dredge line, yield strength of steel, section modulus of steel sheet pile, and anchor pull are all treated as random variables. The sheet pile wall system is modeled as a series of failure mode combination. Penetration depth, anchor pull, and section modulus are calculated for various target component and system reliability indices based on three limit states. These are: rotational failure about the position of the anchor rod, expressed in terms of moment ratio; sliding failure mode, expressed in terms of force ratio; and flexural failure of the steel sheet pile wall, expressed in terms of the section modulus ratio. An attempt is made to propose reliability based design charts considering the failure criteria as well as the variability in the parameters. The results of the study are compared with studies in the literature.
Resumo:
A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade. DOI: 10.1115/1.3593409]
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.