945 resultados para Evacuation of civilians.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
This executive order by Governor Nikki R. Haley order a mandatory evacuation of all healthcare facilities, licensed by the Department of Health and Environmental Control and located in the designated evacuation zones in certain lowcountry counties.
Resumo:
This executive order by Governor Nikki R. Haley orders a mandatory evacuation of all healthcare facilities, licensed by the Department of Health and Environmental Control and located in the designated evacuation zones in certain counties due to Hurricane Matthew.
Resumo:
This executive order by Governor Nikki R. Haley has declared a State of Emergency and orders an evacuation of all persons located in certain coastal counties due to Hurricane Matthew.
Resumo:
This executive order by Governor Nikki R. Haley orders an evacuation of all persons located in the specified Evacuation Zone A in Georgetown and Horry counties with the exception of those critical or emergency response personnel due to Hurricane Matthew and directs that specified units of the South Carolina National Guard, at the discretion of the AdJutant General in consultation with the Director of the Emergency Preparedness Division may remain on duty to assist civil authorities in these counties.
Resumo:
This executive order by Governor Nikki R. Haley order an evacuation of all persons located in the specified Evacuation Zone B in Colleton and Jasper counties with the exception of those critical or emergency response personnel and directs that specified units of the South Carolina National Guard, at the discretion of the Adjutant General in consultation with the Director of the Emergency Preparedness Division, may remain on duty to assist civil authorities in these counties.
Resumo:
If current population and accommodation trends continue, Australian cities will, in the future, have noticeable numbers of apartment buildings over 60 storeys high. With an aging population it follows that a significant proportion of those occupying these buildings will be senior citizens, many of whom will have some form of disability. For these occupants a fire emergency in a high rise building presents a serious problem. Currently lifts cannot be used for evacuation and going down 60 storeys in a fire isolated staircase would be physically impossible for many. Therefore, for many, the temptation to remain in one’s unit will be very strong. With an awareness of this behaviour trend in older residents, many researchers have, in recent years, explored the possible wider use of lifts in a fire emergency. So far the use of lifts for evacuation has been approved for a small number of buildings but wide acceptance of this solution is still to be achieved. This paper concludes that even in high-rise apartment buildings where lifts are approved for evacuation, architects should design the building with alternative evacuation routes and provide suitable safe refuge areas for those who cannot use the stairs when the lifts are unavailable.
Resumo:
Floods through inundated urban environments constitute a hazard to the population and infrastructure. A series of field measurements were performed in an inundated section of the City of Brisbane (Australia) during a major flood in January 2011. Using an acoustic Doppler velocimeter (ADV), detailed velocity and suspended sediment concentration measurements were conducted about the peak of the flood. The results are discussed with a focus on the safety of individuals in floodwaters and the sediment deposition during the flood recession. The force of the floodwaters in Gardens Point Road was deemed unsafe for individual evacuation. A comparison with past laboratory results suggested that previous recommendations could be inappropriate and unsafe in real flood flows.
Resumo:
The safety of passengers is a major concern to airports. In the event of crises, having an effective and efficient evacuation process in place can significantly aid in enhancing passenger safety. Hence, it is necessary for airport operators to have an in-depth understanding of the evacuation process of their airport terminal. Although evacuation models have been used in studying pedestrian behaviour for decades, little research has been done in considering the evacuees’ group dynamics and the complexity of the environment. In this paper, an agent-based model is presented to simulate passenger evacuation process. Different exits were allocated to passengers based on their location and security level. The simulation results show that the evacuation time can be influenced by passenger group dynamics. This model also provides a convenient way to design airport evacuation strategy and examine its efficiency. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Floods through inundated urban environments constitute a hazard to the population and infrastructure. A series of field measurements were performed in an inundated section of the City of Brisbane (Australia) during a major flood in January 2011. Using an acoustic Doppler velocimeter (ADV), detailed velocity and suspended sediment concentration measurements were conducted about the peak of the flood. The results are discussed with a focus on the safety of individuals in floodwaters and the sediment deposition during the flood recession. The force of the floodwaters in Gardens Point Road was deemed unsafe for individual evacuation. A comparison with past laboratory results suggested that previous recommendations could be inappropriate and unsafe in real flood flows.
Resumo:
Passenger experience has become a major factor that influences the success of an airport. In this context, passenger flow simulation has been used in designing and managing airports. However, most passenger flow simulations failed to consider the group dynamics when developing passenger flow models. In this paper, an agent-based model is presented to simulate passenger behaviour at the airport check-in and evacuation process. The simulation results show that the passenger behaviour can have significant influences on the performance and utilisation of services in airport terminals. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
States regularly deploy elements of their armed forces abroad. When that happens, the military personnel concerned largely remain governed by the penal law of the State that they serve. This extraterritorial extension of national criminal law, which has been treated as axiomatic in domestic law and ignored by international law scholarship, is the subject of this dissertation. The first part of the study considers the ambit of national criminal law without any special regard to the armed forces. It explores the historical development of the currently prevailing system of territorial law and looks at the ambit that national legal systems claim today. Turning then to international law, the study debunks the oddly persistent belief that States enjoy a freedom to extend their laws to extraterritorial conduct as they please, and that they are in this respect constrained only by some specific prohibitions in international law. Six arguments historical, empirical, ideological, functional, doctrinal and systemic are advanced to support a contrary view: that States are prohibited from extending the reach of their legal systems abroad, unless they can rely on a permissive principle of international law for doing so. The second part of the study deals specifically with State jurisdiction in a military context, that is to say, as applied to military personnel in the strict sense (service members) and various civilians serving with or accompanying the forces (associated civilians). While the status of armed forces on foreign soil has transformed from one encapsulated in the customary concept of extraterritoriality to a modern regulation of immunities granted by treaties, elements of armed forces located abroad usually do enjoy some degree of insulation from the legal system of the host State. As a corollary, they should generally remain covered by the law of their own State. The extent of this extraterritorial extension of national law is revealed in a comparative review of national legislation, paying particular attention to recent legal reforms in the United States and the United Kingdom two states that have sought to extend the scope of their national law to cover the conduct of military contractor personnel. The principal argument of the dissertation is that applying national criminal law to service members and associated civilians abroad is distinct from other extraterritorial claims of jurisdiction (in particular, the nationality principle or the protective principle of jurisdiction). The service jurisdiction over the armed forces has a distinct aim: ensuring the coherence and indivisibility of the forces and maintaining discipline. Furthermore, the exercise of service jurisdiction seeks to reduce the chances of the State itself becoming internationally liable for the conduct of its service members and associated civilians. Critically, the legal system of the troop-deploying State, by extending its reach abroad, seeks to avoid accountability gaps that might result from immunities from host State law.
Resumo:
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
Resumo:
Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.
Resumo:
Computer based mathematical models describing the aircraft evacuation process and aircraft fire have a role to play in the design and development of safer aircraft, in the implementaion of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost and risk involved in performing large-scale fire/evacuation experiments for the next generation 'Very Large Aircraft' (VLA) are expected to be high, the development and use of these modelling tools may become essential if these aircraft are to prove a viable reality. By describing the present capabililties and limitations of the EXODUS evacuation model and associated fire models, this paper will examine the future development and data requirements of these models.