996 resultados para Ethanol electro-oxidation
Resumo:
The immobilization and electro-oxidation of guanine and adenine asDNA bases on glassy carbon electrode are evaluated by square wave voltammetric analysis. The influence of electrochemical pretreatments, nature of supporting electrolyte, pH, accumulation time and composition of DNA nucleotides on the immobilization effect and the electrochemical mechanism are discussed. Trace levels of either guanine or adenine can be readily detected following short accumulation time with detection limits of 35 and 40 ngmL−1 for guanine and adenine, respectively. The biosensors of guanine and adenine were employed for the voltammetric detection of antioxidant capacity in flavored water samples. The method relies on monitoring the changes of the intrinsic anodic response of the surface-confined guanine and adenine species, resulting from its interaction with free radicals from Fenton-type reaction in absence and presence of antioxidant. Ascorbic acid was used as standard to evaluate antioxidant capacities of samples. Analytical data was compared with that of FRAP method.
Resumo:
The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.
Resumo:
Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.
Resumo:
A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.
Resumo:
In this work, a simple route to prepare carbon supported Pt/C, Pt:Ru/C, Pt:Mo/C and Pt:Ru:Mo/C catalysts is reported. The electrochemical properties of the several carbon materials used as substrates in the absence and in the presence of supported platinum and platinum alloys catalysts were investigated using cyclic voltammetry and employing the thin porous coating electrode technique. The activity of the dispersed catalysts composed of Pt/C with respect to the oxygen reduction and of alloy/C with respect to methanol oxidation was investigated using steady state polarization measurements. The performance with respect to the oxygen reduction reaction of the Pt/C catalyst prepared on heat-treated Vulcan carbon substrate is equivalent to that reported in the literature for the state-of-the-art electrocatysts. Pt:Ru:Mo/C samples prepared in this work presented the higher catalytic effect for methanol electro-oxidation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present paper we investigated the effect of adsorbed PVA on Pt electrodes on classic electrochemical processes such as hydrogen UPD, oxygen reduction and CO electro-oxidation. Upon adsorption PVA blocks roughly 50% of the hydrogen sites and can not be removed from the Pt surface through cycling in the potential range of 0.05-1.0 V vs. RHE. Potentiodynamic experiments under controlled hydrodynamic conditions provided by rotating disk electrode experiments showed a negative impact of the adsorbed PVA on the oxygen reduction reaction (ORR). Cyclic-voltammetry results revealed that not even CO was able to remove PVA from the Pt surface. Regarding the oxidation of CO, the adsorbed polymer positively shifted the CO oxidation peak potential, therefore higher potentials are required to free the Pt surface from CO poisoning. In situ Fourier transform infrared spectroscopy evidenced that the presence of PVA shifted the linearly bound CO frequency toward higher wavenumbers, a process found to be independent of the Pt surface orientation. In situ electrochemical X-ray absorption spectroscopy results showed that PVA also impacted the electronic properties of platinum by decreasing the occupancy of the Pt conducting 5d band. Our findings clearly support the efforts toward understanding the nature of the interaction between polymers and metallic surfaces as well as the impact on technological applications (e.g. in PEMFCs). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silver nanoparticles (Ag) were deposited on multi-walled carbon nanotube by eletroless. The hybrid Ag/MWCNT was used in the modification of glassy carbon electrode (GC) surface. The electrochemical characterization confirmed the presence of Ag in the nanocomposite has been showed that the synthesis was successful. The GC electrode modified with Ag/MWCNT film was evaluated for electro-oxidation of benzene. The electrochemical behavior presented an improvement on the catalytic surface in relation to non-modified GC electrode. The anodic peak current increased the magnitude in three times when compared with the CG electrode modified only with MWCNT
Resumo:
Interest in the electronic properties of carbon nanotubes has increased in recent years. These materials can be used in the development of electrochemical sensors for the measurement and monitoring of analytes of environmental interest, such as pharmaceuticals, dyes, and pesticides. This work describes the use of homemade screen-printed electrodes modified with multi-walled carbon nanotubes (MWCNT) for the electrochemical detection of the fungicide thiram. The electrochemical characteristics of the proposed system were evaluated using cyclic voltammetry, with investigation of the electrochemical behavior of the sensor in the presence of the analyte, and estimation of electrochemical parameters including the diffusion coefficient, electron transfer coefficient (α), and number of electrons transferred in the catalytic electro-oxidation. The sensor response was optimized using amperometry. The best sensor performance was obtained in 0.1 mol L-1 phosphate buffer solution at pH 8.0, where a detection limit of 7.9 x 10-6 mol L-1 was achieved. Finally, in order to improve the sensitivity of the sensor, square wave voltammetry (SWV) was used for thiram quantification, instead of amperometry. Using SWV, a response range for thiram from 9.9 x 10-6 to 9.1 x 10-5 mol L-1 was obtained, with a sensitivity of 30948 µA mol L-1, and limits of detection and quantification of 1.6 x 10-6 and 5.4 x 10-6 mol L-1, respectively. The applicability of this efficient new alternative methodology for thiram detection was demonstrated using analyses of enriched soil samples.
Resumo:
The mechanism of electrochemical oxidation of surface reformed CuA1Ag alloys having different composition of heat treatment, in 0.5 M NaOH was studied by means of cyclic polarization, constant potential electrolysis, ICP, AA, SEM and EDX. The surface reformation consisted of a repetitive triangular potential sweep (RTPS) between H 2 and O 2 evolution at 100 mV s -1 in the working solution itself, performed in order to increase the electrode roughness and obtain a quasi-stationary I/E profile in which the potentiodynamic behaviour of copper and silver was clearly revealed. The alloys suffer aluminum dealloying after such an RTPS. The quasi-stationary cyclic polarization curve exhibits a multiplicity of current peaks which have been related to the electrochemical reactions involving the pure alloying elements. Complex potential perturbation programmes in regions having different anodic and cathodic limits allowed the study of the mechanism of the electrochemical oxidation of the surface reformed alloys and the compare with that corresponding to the pure metals. The basic differences between the electro-oxidation processes of the surface reformed CuA1Ag alloys with respect to those established for the high purity alloying metals are the splitting of the peaks corresponding to the formation of the Cu(I) and Ag(I) species. © 1991.
A label-free impedimetric immunosensor for direct determination of the textile dye Disperse Orange 1
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)