874 resultados para Estuarine ecology -- Australia
Resumo:
Mangroves are often described as a group of plants with common features and common origins based mostly on their broad distributional patterns, together with an erroneous view of comparable abilities in long-distance dispersal. However, whilst mangroves have common needs to adapt to rigorous environmental constraints associated with regular seawater inundation, individual taxa have developed different strategies and characteristics. Since mangroves are a genetically diverse group of mostly flowering plants, they may also have evolved at quite different geological periods, dispersed at different rates from different locations and developed different adaptive strategies. Current distributions of individual taxa show numerous instances of unusual extant distribution which demonstrate finite dispersal limitations, especially across open water. Our preliminary assessment of broad distribution and discontinuities reveals important patterns. Discontinuities, in the absence of current dispersal barriers, may be explained by persistent past barriers. As we learn more about discontinuities, we are beginning to appreciate their immense implications and what they might tell us about past geological conditions and how these might have influenced the distribution and evolution of mangroves. In this article, we describe emerging patterns in genetic relationships and distributions based on both current knowledge and preliminary results of our studies of molecular and morphometric characteristics of Rhizophora species in the Indo West Pacific region.
Resumo:
Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.
Resumo:
Coral reefs are one of the most diverse habitats in the world [1], yet our understanding of the processes affecting their biodiversity is limited [1-3]. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns [4] and may indirectly affect fish demography through the removal of large numbers of parasites [5, 6]. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms [2, 7]. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small [8] and not very abundant [9] fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.
Resumo:
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove (Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Toxic (Gobiodon spp.) and non-toxic (Paragobiodon xanthosomus) gobies became infected with external parasites (gnathiid isopods) at equal rates in a laboratory experiment. Parasites were evenly distributed over the body of P. xanthosomus but were mostly confined to the fins of Gobiodon spp., where toxin glands are less abundant. Skin toxins were not associated with the rate of infection but their distribution did appear to influence the site of parasite attachment. (C) 2003 The Fisheries Society of the British Isles.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
Haliclona sp. 628 (Demospongiae, Haplosclerida, Chalinidae), a sponge found on the reef slope below 5 in depth on the Great Barrier Reef, has two unusual characteristics. It contains a symbiotic dinoflagellate, Symbiodinium sp., similar in structure to the dinoflagellate found within Acropora nobilis (S. microadriaticum), and it contains coral nematocysts randomly distributed between the ectosome and endosome and usually undischarged in intact sponge tissue. Given the unusual occurrence of nematocysts in Haliclona sp. 628, the focus of this study was to determine the distribution of this species of sponge on the reef slope at Heron Island Reef in relation to the distribution of potential coral donors. A combination of line and belt transects was used to estimate the abundance of Halielona sp. 628 and a co-occurring congener, Haliclona sp. 1031, which does not contain nematocysts, at three widely separated sites on the reef slope at Heron Island Reef. The abundance of different types of substratum (sand, sand-covered coral rubble, dead A. nobilis, live A. nobilis, other live coral, and other dead coral) along the transects and the substratum to which each sponge colony was attached were also recorded. Despite the predominance of live A. nobilis and sand-covered rubble at all sites, between 30 and 55% of Haliclona sp. 628 colonies were attached to dead A. nobilis which comprised less than 8% of the available substratum along any transect. In contrast, Haliclona sp. 1031 was found significantly more frequently on other dead corals and less frequently on live A. nobilis than would be expected based on the availability of the different substrata in the sites. Potential explanations to account for the distribution of Haliclona sp. 628 in relation to potential coral donors are discussed.
Resumo:
Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically; then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that,. while not strictly biological, have a strong influence on the species present or ecological processes. Out scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of eco-system goods and services for people ultimately depend on meeting this objective.
Resumo:
Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] used a simple phytoplanktonzooplankton-nutrient model and a genetic algorithm to determine the parameter values that would maximize the value of certain goal functions. These goal functions were to maximize biomass, maximize flux, maximize flux to biomass ratio, and maximize resilience. It was found that maximizing goal functions maximized resilience. The objective of this study was to investigate whether the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] result was indicative of a general ecosystem principle, or peculiar to the model and parameter ranges used. This study successfully replicated the Cropp and Gabric [Ecosystem adaptation: do ecosystems maximise resilience? Ecology. In press] experiment for a number of different model types, however, a different interpretation of the results is made. A new metric, concordance, was devised to describe the agreement between goal functions. It was found that resilience has the highest concordance of all goal functions trialled. for most model types. This implies that resilience offers a compromise between the established ecological goal functions. The parameter value range used is found to affect the parameter versus goal function relationships. Local maxima and minima affected the relationship between parameters and goal functions, and between goal functions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Issued April 1977.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Subject Profile Index: p.169-353.
Resumo:
This study investigated the spatial distribution patterns of three shrimp species, Periclimenes holthuisi, P. brevicarpalis, and Thor amboinensis on the sea anemone Stichodactyla haddoni in the laboratory. Anemones were partitioned into five zones (mouth, inner tentacle, outer tentacle, upper column, and lower column), and shrimp distribution on these zones was determined. Regardless of species, significantly higher numbers of shrimps chose outer tentacles (>40%) over other zones during daytime. Such distribution might be attributed to their feeding practices as these crustaceans clipped and ate parts of the outer tentacles. Periclimenes holthuisi also showed varying temporal distribution patterns on their hosts. At night when anemones contracted their tentacles, shrimp moved in significant numbers from the outer tentacle region either to the column or off the anemones. Shrimps returned to the tentacles during daytime when anemones expanded their tentacles. Thus, spatial and temporal distribution of shrimps depend upon their feeding activities and degree of anemone expansion.