435 resultados para Estaurolite, Ilmenite
Resumo:
We present results of a microprobe investigation of fresh and least-deformed and metamorphosed gabbroic rocks from Leg 118, Hole 735B, drilled on the east side of the Atlantis II Fracture Zone, Southwest Indian Ridge. This rock collection comprises cumulates ranging from troctolites to olivine-gabbro and olivine-gabbronorite to ilmenite-rich ferrogabbros and ferrogabbronorites. As expected, the mineral chemistry is variable and considerably expands the usual oceanic reference spectrum. Olivine, plagioclase, and clinopyroxene are present in all the studied samples. Orthopyroxene and ilmenite, although not rare, are not ubiquitous. Olivine compositions range from Fo85 to Fo30, while plagioclase compositions vary from An70 to An27. Mg/(Mg + Fe2+) of clinopyroxene (mostly diopside to augite) varies from 0.88 to 0.54. Mg/(Mg + Fe2+) of orthopyroxene varies from 0.84 to 0.50. These minerals are not significantly zoned. All mineralogical data indicate that fractional crystallization is an important factor for the formation of cumulates. However, sharp contacts, interpreted as layering boundaries or intrusion margins, suggest polycyclic fractionation of several magma batches of limited volumes. Calculated compositions of magmas in equilibrium with the most magnesian mineral samples at the bottom of the hole represent fractionated liquids through separation of olivine, plagioclase, and clinopyroxene at moderate to low pressures (less than 9 kb). Crystallization of orthopyroxene and ilmenite occurs in the most differentiated liquids. Mixing of magmas having various compositions before entering the cumulate zone is another mechanism necessary to explain extremely differentiated iron-rich gabbros formed in this slow-spreading ridge environment.
Resumo:
Fifty m of basement rocks underlying 185 m of Neogene and Mesozoic sediments were drilled seaward of the Mazagan Slope about 100 km west of Casablanca during Leg 79. These rocks are metagranites with mylonitic textures consisting dominantly of quartz, plagioclase, and potassium feldspar. Chemically, they are strongly peraluminous. This along with the absence of hornblende suggest that these rocks are similar to the S-type granites. Petrographic and chemical data suggest the possible existence of a former weathering surface on top of the Mazagan metagranite.
Resumo:
Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.
Resumo:
Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.
Resumo:
Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.
Resumo:
DSDP Leg 82 drilled nine sites to the southwest of the Azores Islands on the west flank of the Mid-Atlantic Ridge (MAR) in an attempt to determine the temporal and spatial evolution of the Azores "hot-spot" activity. The chemistry of the basalts recovered during Leg 82 is extremely varied: in Holes 558 and 561, both enriched (E-type: CeN/YbN = 1.5 to 2.7; Zr/Nb = 4.5 to 9.6) and depleted (or normal-N-type: CeN/YbN = 0.6 to 0.8; Zr/Nb > 20) mid-ocean ridge basalts (MORB) occur as intercalated lava flows. To the north of the Hayes Fracture Zone, there is little apparent systematic relationship between basalt chemistry and geographic position. However, to the south of the Hayes Fracture Zone, the chemical character of the basalts (N-type MORB) is more uniform. The coexistence of both E-type and N-type MORB in one hole may be explicable in terms of either complex melting/ fractionation processes during basalt genesis or chemically heterogeneous mantle sources. Significant variation in the ratios of strongly incompatible trace elements (e.g., La/Ta; Th/Ta) in the basalts of Holes 558 and 561 are not easily explicable by processes such as dynamic partial melting or open system crystal fractionation. Rather, the trace element data require that the basalts are ultimately derived from at least two chemically distinct mantle sources. The results from Leg 82 are equivocal in terms of the evolution of the Azores "hot spot," but would appear not to be compatible with a simple model of E-type MORB magmatism associated with upwelling mantle "blobs." Models that invoke a locally chemically heterogeneous mantle are best able to account for the small-scale variation in basalt chemistry.
Resumo:
Igneous rock units were encountered at four of the five sites drilled on Leg 30 of the Deep Sea Drilling Project. These units uncluded a diabase sill at Site 285, a basalt underlain by a gabbro at 286, two basalt flows at 287, and a basalt flow at 289. Site 285 is located approximately in the center of the South Fiji Basin, Site 286 is adjacent to a filled portion of the New Hebrides Trench, Site 287 is adjacent to a basement high in the Coral Sea Basin, and Sites 288 and 289 are located on the Ontong-Java Plateau north of the Solomon Islands (Figure 1). Figure 2 presents generalized lithologic columns for the igneous rock units found at these sites. When a unit number is given, e.g., Site 286, Unit 4 basalt, this number conforms with the unit number assigned to it in the overall stratigraphic sequence of that hole as defined in the individual Site Reports in this volume. Unless otherwise stated, depths are given as measured from the sediment-igneous rock contact rather than the mudline.
Resumo:
We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.
Resumo:
Structure and composition of sub-surface bottom sediments from the southwest Barents Sea have been under study. The study has revealed heterogeneity of sediment structure resulted from temporal irregularity and variability of sedimentation processes. The study of the heavy minerals from 0.1-0.01 mm grain size fraction has shown prevalence of green hornblende, epidote, garnet, and ilmenite in all types of sediments; these minerals are the basis of terrigenous-mineralogical province. At the same time in different areas local terrigenous-mineralogical associations have been identified. Clay mineral composition of in the sediments was quite uniform: biotite, chlorite, hydromica, smectite. Despite this, a number of features indicating initial stages of clay mineral transformation has been identified. Differences in material composition and structure of the studied sediments are associated with rapid change in paleogeographic situation on the land - ice cover melting on the Kola Peninsula and subsequent Holocene climatic situation.