925 resultados para Error correction codes
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.
Resumo:
In this paper we provide a recipe for state protection in a network of oscillators under collective damping and diffusion. Our strategy is to manipulate the network topology, i.e., the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies, in order to create a relaxation-diffusion-free channel. This protected channel defines a decoherence-free subspace (DFS) for nonzero-temperature reservoirs. Our development also furnishes an alternative approach to build up DFSs that offers two advantages over the conventional method: it enables the derivation of all the network-protected states at once, and also reveals, through the network normal modes, the mechanism behind the emergence of these protected domains.
Resumo:
The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.
Resumo:
We analyze the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of two-mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter, and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case including phase noise to model degraded entanglement of each resource.
Resumo:
The purpose of this paper is to analyze the dynamics of national saving-investment relationship in order to determine the degree of capital mobility in 12 Latin American countries. The analytically relevant correlation is the short-term one, defined as that between changes in saving and investment. Of special interest is the speed at which variables return to the long run equilibrium relationship, which is interpreted as being negatively related to the degree of capital mobility. The long run correlation, in turn, captures the coefficient implied by the solvency constraint. We find that heterogeneity and cross-section dependence completely change the estimation of the long run coefficient. Besides we obtain a more precise short run coefficient estimate compared to the existent estimates in the literature. There is evidence of an intermediate degree of capital mobility, and the coefficients are extremely stable over time.
Resumo:
We build a model that incorporates the effect of the innovative ""flex"" car, an automobile that is able to run with either gasoline or alcohol, on the dynamics of fuel prices in Brazil. Our model shows that differences regarding fuel prices will now depend on the proportions of alcohol, gasoline and flex cars in the total stock. Conversely, the demand for each type of car will also depend on the expected future prices of alcohol and gasoline (in addition to the car prices). The model reflects our findings that energy prices are tied in the long run and that causality runs stronger from gasoline to alcohol. The estimated error correction parameter is stable, implying that the speed of adjustment towards equilibrium remains unchanged. The latter result is probably due to a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its sales nearly reached 100% in 2006. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper examines the hysteresis hypothesis in the Brazilian industrialized exports using a time series analysis. This hypothesis finds an empirical representation into the nonlinear adjustments of the exported quantity to relative price changes. Thus, the threshold cointegration analysis proposed by Balke and Fomby [Balke, N.S. and Fomby, T.B. Threshold Cointegration. International Economic Review, 1997; 38; 627-645.] was used for estimating models with asymmetric adjustment of the error correction term. Amongst sixteen industrial sectors selected, there was evidence of nonlinearities in the residuals of long-run relationships of supply or demand for exports in nine of them. These nonlinearities represent asymmetric and/or discontinuous responses of exports to different representative measures of real exchange rates, in addition to other components of long-run demand or supply equations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The small sample performance of Granger causality tests under different model dimensions, degree of cointegration, direction of causality, and system stability are presented. Two tests based on maximum likelihood estimation of error-correction models (LR and WALD) are compared to a Wald test based on multivariate least squares estimation of a modified VAR (MWALD). In large samples all test statistics perform well in terms of size and power. For smaller samples, the LR and WALD tests perform better than the MWALD test. Overall, the LR test outperforms the other two in terms of size and power in small samples.
Resumo:
We propose two quantum error-correction schemes which increase the maximum storage time for qubits in a system of cold-trapped ions, using a minimal number of ancillary qubits. Both schemes consider only the errors introduced by the decoherence due to spontaneous emission from the upper levels of the ions. Continuous monitoring of the ion fluorescence is used in conjunction with selective coherent feedback to eliminate these errors immediately following spontaneous emission events.
Resumo:
This paper examines the causal links between fertility and female labor force participation in Bangladesh over the period 1974-2000 by specifying a bivariate and several trivariate models in a vector error correction framework. The three trivariate models alternatively include average age at first marriage for females, per capita GDP and infant mortality rate, which control for the effects of other socio-economic factors on fertility and female labor force participation. All the specified models indicate an inverse long-run relationship between fertility and female labor force participation. While the bivariate model also indicates bidirectional causality, the multivariate models confirm only a unidirectional causality – from labor force participation to fertility. Further, per capita GDP and infant mortality rate appear to Granger-cause both fertility and female labor force participation.
Resumo:
We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is said to be localizable if it can be implemented by two parties (Alice and Bob) who share entanglement but do not communicate, it is causal if the superoperator does not convey information from Alice to Bob or from Bob to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit examples that are causal but not localizable. We construct another class of causal bipartite superoperators that are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A bipartite superoperator is said to be semilocalizable if it can be implemented with one-way quantum communication from Alice to Bob, and it is semicausal if it conveys no information from Bob to Alice. We show that all semicausal complete-measurement superoperators are semi localizable, and we establish a general criterion for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the eigenspaces of a stabilizer code is localizable.
Resumo:
Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a universal inverter, which acts on quantum systems of arbitrary dimension, and we introduce the corresponding generalized concurrence for joint pure states of D-1 X D-2 bipartite quantum systems. We call this generalized concurrence the I concurrence to emphasize its relation to the universal inverter. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT Superoperator.
Resumo:
Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.