861 resultados para Erbium doped fiber
Resumo:
We examine the impact of the fiber type and dispersion management on the performance of a 16 × 40 Gb/s dense wavelength-division-multiplexing nonreturn-to-zero transmission system. The transmission line is composed of G.652 or G.655 fiber with periodic dispersion compensation and hybrid Raman erbium-doped fiber amplifier amplification.
Resumo:
Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Recently, temporal and statistical properties of quasi-CW fiber lasers have attracted a great attention. In particular, properties of Raman fiber laser (RFLs) have been studied both numerically and experimentally [1,2]. Experimental investigation is more challengeable, as the full generation optical bandwidth (typically hundreds of GHz for RFLs) is much bigger than real-time bandwidth of oscilloscopes (up to 60GHz for the newest models). So experimentally measured time dynamics is highly bandwidth averaged and do not provide precise information about overall statistical properties. To overpass this, one can use the spectral filtering technique to study temporal and statistical properties within optical bandwidth comparable with measurement bandwidth [3] or indirect measurements [4]. Ytterbium-doped fiber lasers (YDFL) are more suitable for experimental investigation, as their generation spectrum usually 10 times narrower. Moreover, recently ultra-narrow-band generation has been demonstrated in YDFL [5] which provides in principle possibility to measure time dynamics and statistics in real time using conventional oscilloscopes. © 2013 IEEE.
Resumo:
We propose a simple Er-doped fiber laser configuration for achieving stable dual-wavelength oscillation at room temperature, in which a high birefringence fiber Bragg grating was used as the wavelength-selective component. Stable dual-wavelength oscillation at room temperature with a wavelength spacing of 0.23 nm and mutually orthogonal polarization stages was achieved by utilizing the polarization hole-burning effect. An amplitude variation of less than 0.7 dB over an 80 s period was obtained for both wavelengths.
Resumo:
Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.
Resumo:
We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America.
Resumo:
We demonstrated a high fundamental repetition-rate pulsed erbium-doped fiber laser with all-fiber-integrated configuration. A novel scheme using a 45°-tilted fiber grating as the in-fiber polarizing element was employed to shorten the total cavity length and, thus, increase the fundamental repetition rate of the laser. Dissipative soliton pulses mode-locked with a fundamental repetition rate of 251.3 MHz and pulse duration of 96.7 fs have been achieved from the compact and all-fiber ring cavity laser. Additionally, passively Q-switched pulses were observed from this high fundamental repetition-rate fiber laser, which is the first report on Q-switched fiber laser using a tilted fiber grating.
Resumo:
We present direct real-time experimental measurements and numerical modeling of temporal and statistical properties for the Ytterbiumdoped fiber laser with spectral bandwidth of ∼2 GHz. The obtained results demonstrate nearly exponential probability density function for intensity fluctuations. A significant decrease below the Gaussian probability has been experimentally observed for intensity fluctuations having value more than 2.5 of average intensity that may be treated as indication of some mode correlations. © 2013 Optical Society of America.
Resumo:
We experimentally demonstrate an all-fiber single-polarization dual-wavelength Yb-doped fiber laser passively mode-locked with a 45°-tilted fiber grating for the first time. Stable dual-wavelength operation exhibits double-rectangular spectral profile centered at 1033 and 1053 nm, respectively. The 3 dB bandwidth of each rectangular optical spectrum is estimated as 10 nm. The separation of two fundamental repetition rates is 6 kHz. By employing the 45° TFG with the polarization-dependent loss of 33 dB, output pulses with 27 dB polarization extinction ratio are implemented in the experiment. The single pulse centered at 1053 nm is researched by using a filter at the output port of the laser, and the experimental results denote that the output ps pulses are highly chirped. The formation mechanism of dual-wavelength operation is investigated.
Resumo:
We study polarization dynamics of a harmonic mode-locked erbium-doped fiber laser with carbon nanotubes absorber. New types of vector solitons are shown for multi-pulse and harmonic mode-locked operation with locked, switching and precessing polarization states. © 2014 OSA.
Resumo:
We report on ring thulium-doped fiber laser hybrid mode-locked by single-walled carbon nanotubes and nonlinear polarization evolution generating 600-fs pulses at 1910-1980nm wavelength band with 72.5MHz repetition rate. Average output power reached 300mW in single-pulse operation regime, corresponding to 4.88kW peak power and 2.93nJ pulse energy.
Resumo:
An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity. © 2012 Optical Society of America.
Resumo:
A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.
Resumo:
We develop a theoretical framework for modeling of continuous wave Yb-doped fiber lasers with highly nonlinear cavity dynamics. The developed approach has shown good agreement between theoretical predictions and experimental results for particular scheme of Yb-doped laser with large spectral broadening during single round trip. The model is capable to accurately describe main features of the experimentally measured laser outputs such as power efficiency slope, power leakage through fibre Bragg gratings, spectral broadening and spectral shape of generated radiation. © 2011 Optical Society of America.