998 resultados para Erbium
Resumo:
We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL.
Resumo:
Gadolinium oxyortho-silicate, Gd2SiO5, presents a monoclinic structure with two crystallographic sites in which Gd3+ ions are equally distributed with coordination numbers CN, 7 and 9, respectively. By doping this host with Er3+ it is possible to distinguish and attribute the two sites by means of lifetime determination of the 4S3/2 state, (in this case, Er3+ substitutes Gd3+ ions). Samples doped with 0.1 and 5.0% molar Er3+ were prepared by solid state reaction and characterized by X-ray Diffractometry, Vibrational and Electronic Absorption Spectroscopies, and Time Resolved Photoluminescence. Based on the experimental results, it is possible to verify that, for the 5,0% doped sample, the lifetime value of the 4S3/2 state of the erbium ion inserted in site 1, (CN = 9), is 2.7 ± 0.1 mus, and for the one inserted in site 2, (CN = 7), it is 1.5 ± 0.1 mus.
Resumo:
Complexes with the composition Ln(NO3)3.2DTPO.4H2O (Ln = Nd and Er) were synthesized and characterized by infrared and visible absorption spectra (solid state and solution). The results of the absorption spectra in the solid state suggest that metal-ligand bonds are essentially electrostatic in all complexes. The absorption spectra of the nitrate salt solution presented smaller values of the oscillator strength when compared to the spectra of the complexes in the same solvent.
Resumo:
Studies on pulse propagation in single mode optical fibers have attracted interest from a wide area of science and technology as they have laid down the foundation for an in-depth understanding of the underlying physical principles, especially in the field of optical telecommunications. The foremost among them is discovery of the optical soliton which is considered to be one of the most significant events of the twentieth century owing to its fantastic ability to propagate undistorted over long distances and to remain unaflected after collision with each other. To exploit the important propertia of optical solitons, innovative mathematical models which take into account proper physical properties of the single mode optical fibers demand special attention. This thesis contains a theoretical analysis of the studies on soliton pulse propagation in single mode optical fibers.
Resumo:
Introducción A pesar de que los nevos melanocíticos son un motivo de consulta frecuente en nuestra población no existen estudios a nivel de Colombia acerca de su tratamiento, a nivel mundial existe muy poca literatura al respecto por lo que hay un vacío conceptual en este campo. Objetivos Evaluar los cambios en cuanto a la presencia de pigmento y cicatrización, en los nevos melanocíticos adquiridos tratados con láser, basados en la experiencia de un solo centro en Bogotá. Materiales y métodos Es un estudio observacional de antes y después, en una cohorte histórica, de 90 casos de nevos melanocíticos adquiridos, tratados con láser en Uniláser Medica, en los que se evaluó la presencia de pigmento, cicatrización, y otras variables, con un control realizado a no menos de 3 meses de la intervención. Resultados Se encontró un rango de edad entre los 18 -51 años, promedio 27,59 años; fototipo de III-V; en el 32% de los casos, solo fue requerida una sesión de láser de Co2 y Erbio, para el aclaramiento completo de la misma. La duración del eritema en el 54,4% los casos fue de 1 a 3 meses. En un 64,4% quedó pigmento residual al control, pero de éstos casos el 48,2% fue entre un 5 a un 10% del inicial. El 58,9% hizo cicatriz, de éstos el 63% fue estética. La satisfacción por parte de los pacientes es alta a pesar de la persistencia pigmentaria y/o la presencia de cicatriz. Discusión El tratamiento de nevos melanocíticos adquiridos con láser es una opción terapéutica que genera cambios estadísticamente significativos en cuanto a pigmento, cicatriz estética y alta satisfacción por parte de los pacientes. Se requieren estudios, analíticos, para determinar eficacia del tratamiento.
Resumo:
The new erbium(III) complex of picolinic acid (Hpic), ["Bu4N][Er(pic)(4)].5.5H(2)O, was synthesized and the crystal structure determined by single-crystal X-ray diffraction. The compound was further characterized using IR, Raman, H-1 NMR and elemental analysis. The picolinate ligands (pic(-)) are coordinated through N,O-chelation to the erbium cations, as shown by X-ray diffraction and spectroscopic results, leading to an eight coordinate complex. Photoluminescence measurements were performed for this compound which exhibits infrared emission. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.
Resumo:
This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Recently, the erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser has been used for periodontal therapy. This study compared Er:YAG laser irradiation (100 mJ/pulse, 10 Hz, 12.9 J/cm(2)) with or without conventional scaling and root planing (SRP) to SRP only for the treatment of periodontal pockets affected with chronic periodontitis.Methods: Twenty-one subjects with pockets from 5 to 9 mm in non-adjacent sites were studied. In a split-mouth design, each site was randomly allocated to a treatment group: SRP and laser (SRPL), laser only (L), SRP only (SRP), or no treatment (C). The plaque index (PI), gingival index (GI), bleeding on probing (BOP), and interleukin (IL)-1 beta levels in crevicular fluid were evaluated at baseline and at 12 and 30 days postoperatively, whereas probing depth (PD), gingival recession (GR), and clinical attachment level (CAL) were evaluated at baseline and 30 days after treatment. A statistical analysis was conducted (P<0.05).Results: Twelve days postoperatively, the PI decreased for SRPL and SRP groups (P<0.05); the GI increased for L, SRP, and C groups but decreased for the SRPL group (P<0.05); and BOP decreased for SRPL, L, and SRP groups (P<0.01). Thirty days postoperatively, BOP decreased for treated groups and was lower than the C group (P<0.05). PD decreased in treated groups (P<0.001), and differences were found between SRPL and C groups (P<0.05). CAL gain was significant only for the SRP group (P<0.01). GR increased for SRPL and L groups (P<0.05). No difference in IL-1 beta was detected among groups and periods.Conclusion: Er:YAG laser irradiation may be used as an adjunctive aid for the treatment of periodontal pockets, although a significant CAL gain was observed with SRP alone and not with laser treatment.
Resumo:
The objective this study was to evaluate in vitro the bond strength of two etch-and-rise and one self-etching adhesive system after dentin irradiation with Er:YAG (erbium: yttrium aluminum garnet) laser using microtensile test. The results revealed that the groups treated with laser Er:YAG presented less tensile bond strength, independently to the adhesive system used. The prompt L-pop adhesive presented less microtensile bond strength compared to the other adhesives evaluated. There was no difference between single bond and excite groups. The adhesive failures were predominant in all the experimental groups. The Er:YAG laser influenced negatively bond strength values of adhesive systems tested in dental substrate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Erbium L-3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance. (c) 2008 American Institute of Physics.