949 resultados para Equações diferenciais não-lineares - Solução analítica aproximada
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate in this work the behaviour of the decay to the fixed points, in particular along the bifurcations, for a family of one-dimensional logistic-like discrete mappings. We start with the logistic map focusing in the transcritical bifurcation. Next we investigate the convergence to the stationary state at the cubic map. At the end we generalise the procedure for a mapping of the logistic-like type. Near the fixed point, the dynamical variable varies slowly. This property allows us to approximate/rewrite the equation of differences, hence natural from discrete mappings, into an ordinary differential equation. We then solve such equation which furnishes the evolution towards the stationary state. Our numerical simulations confirm the theoretical results validating the above mentioned approximation
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB