985 resultados para Enzymes--Analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Disfunções envolvendo o sistema nervoso são de grande importância na Medicina Veterinária, pois tratam-se de enfermidades de elevada incidência e com poucos subsídios auxiliares no seu diagnóstico, prognóstico e na avaliação de terapias empregadas. Ainda hoje, o diagnóstico baseia-se, em grande parte, no histórico e no exame clínico neurológico. Dessa forma, a análise dos constituintes do fluido cefalorraquidiano torna-se uma das poucas alternativas de acesso clínico ao sistema nervoso central (SNC). Mesmo com a grande utilidade do exame físico-químico e citoscópico do liquor na neurologia veterinária, poucos são os estudos sobre a estabilidade dos seus constituintes sob estocagem. Dessa forma, o presente trabalho teve como finalidade verificar a influência da temperatura e do tempo de conservação nas características físico-químicas do liquor de cães hígidos. Para tanto, foram coletadas amostras de LCR, através da punção da cisterna cerebelo-medular de cães clinicamente sadios, as quais foram submetidas à análise da densidade específica, do pH, da glicorraquia, das proteínas totais e das atividades das enzimas creatina quinase (CK) e aspartato aminotransferase (AST), após conservá-las em diferentes temperaturas (25°C, 4°C e -4°C) e por diferentes períodos de tempo (logo após a colheita, 24 horas, 48 horas, uma semana e um mês). Dentre os resultados obtidos, foi possível verificar, principalmente, que houve estabilidade dos parâmetros estudados por até um mês de estocagem nas amostras mantidas sob a temperaturas de congelamento de -4°C.
Resumo:
The taxonomy of the N(2)-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradryrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses Clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation. including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I. a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-1 metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Snake venom glands are a rich source of bioactive molecules such as peptides, proteins and enzymes that show important pharmacological activity leading to in local and systemic effects as pain, edema, bleeding and muscle necrosis. Most studies on pharmacologically active peptides and proteins from snake venoms have been concerned with isolation and structure elucidation through methods of classical biochemistry. As an attempt to examine the transcripts expressed in the venom gland of Bothrops jararacussu and to unveil the toxicological and pharmacological potential of its products at the molecular level, we generated 549 expressed sequence tags (ESTs) from a directional cDNA library. Sequences obtained from single-pass sequencing of randomly selected cDNA clones could be identified by similarities searches on existing databases, resulting in 197 sequences with significant similarity to phospholipase A(2) (PLA(2)), of which 83.2% were Lys49-PLA(2) homologs (BOJU-1), 0.1% were basic Asp49-PLA(2)s (BOJU-II) and 0.6% were acidic Asp49-PLA(2)s (BOJU-III). Adjoining this very abundant class of proteins we found 88 transcripts codifying for putative sequences of metalloproteases, which after clustering and assembling resulted in three full-length sequences: BOJUMET-I, BOJUMET-II and BOJUMET-III; as well as 25 transcripts related to C-type lectin like protein including a full-length cDNA of a putative galactose binding C-type lectin and a cluster of eight serine-proteases transcripts including a full-length cDNA of a putative serine protease. Among the full-length sequenced clones we identified a nerve growth factor (Bj-NGF) with 92% identity with a human NGF (NGHUBM) and an acidic phospholipase A2 (BthA-I-PLA(2)) displaying 85-93% identity with other snake venom toxins. Genetic distance among PLA(2)s from Bothrops species were evaluated by phylogenetic analysis. Furthermore, analysis of full-length putative Lys49-PLA(2) through molecular modeling showed conserved structural domains, allowing the characterization of those proteins as group II PLA(2)s. The constructed cDNA library provides molecular clones harboring sequences that can be used to probe directly the genetic material from gland venom of other snake species. Expression of complete cDNAs or their modified derivatives will be useful for elucidation of the structure-function relationships of these toxins and peptides of biotechnological interest. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
Aspartic protease (EC 3.4.23) make up a widely distributed class of enzymes in animals, plants, microbes and, viruses. In animals these enzymes perform diverse functions, which range from digestion of food proteins to very specific regulatory roles. In contrast the information about the well-characterized aspartic proteases, very little is known about the corresponding enzyme in urine. A new aspartic protease isolated from human urine has been crystallized and X-ray diffraction data collected to 2.45 Angstrom resolution using a synchrotron radiation source. Crystals belong to the space group P2(1)2(1)2(1) the cell parameters obtained were a=50.99, b=75.56 and c=89.90 Angstrom. Preliminary analysis revealed the presence of one molecule in the asymmetric unit. The structure was determined using the molecular replacement technique and is currently being refined using simulated annealing and conjugate gradient protocols.
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The enzymes of the shikimate pathway are potential targets for the development of new therapies because they are essential for bacteria but absent from mammals. The last step in this pathway is performed by chorismate synthase (CS), which catalyzes the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. Optimization of crystallization trials allowed the crystallization of homogeneous recombinant CS from Mycobacterium tuberculosis (MtCS). The crystals of MtCS belong to space group P6(4)22 (or P6(2)22) and diffract to 2.8 Angstrom resolution, with unit-cell parameters a = b = 129.7, c = 156.8 Angstrom. There are two molecules in the asymmetric unit. Molecular-replacement trials were not sucessful. Heavy-atom derivative screening is in progress.
Resumo:
Fipronil, active ingredient of the acaricide Frontiline (R), is a phenyl-pyrazolic derivative, and its efficacy in the elimination of several plagues, even in low concentrations, has already been demonstrated; however, its effect on nontarget organisms has not been thoroughly explained. In this sense, the objective of this study was to evaluate the effects of different dosages of fipronil on the liver of mice in artificial conditions. Results showed that the animals exposed to fipronil present significant ultrastrucutural changes in hepatic cells with evident cellular and cytoplasm disorganization in hepatocytes characterized by an increase in the number of organelles, mainly mitochondria and rough endoplasmic reticulum, organelles that, in the case of the exposed animals, were probably responsible for the enzymes' synthesis that have the function of inactivating the toxic metabolites. A fat accumulation in the hepatocytes' cytoplasm (steatosis) was observed, in addition to extended vacuolated areas, mainly in regions next to the cell nucleus. Alterations observed in the nuclei of the hepatocytes pointed out cell death processes. Moreover, Kupffer cells increased in number (hyperplasia) suggesting an increase in the phagocytic activity of the liver in the exposed animals. Microsc. Res. Tech., 2011. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esterases are a group of enzymes that are reportedly associated with acaricide resistance in Riphicephallus (Boophilus) microplus. A comparative analysis was made of the esterase patterns in malathion and deltamethrin-sensitive, tolerant and resistant tick groups, using non-denaturing polyacrylamide gel electrophoresis. Electrophoretical profiles revealed four bands of esterase activity against alpha-naphthyl acetate; which were dubbed EST-1 to EST-4. The EST-3 and EST-4 were detected in all strains and were classified as carboxylesterases (CaEs). The EST-2, classified as an acetylcholinesterase (AChE), was detected in all groups, but its staining intensity increased from susceptible to resistant groups, indicating an altered production according to the degree of resistance. EST-1, which was also classified as an AChE, was detected exclusively in tolerant and resistant groups to both acaricides, but displayed greater activity in the malathion-resistant group. These data suggest that these AChEs may represent an important detoxification strategy developed to overcome the effects of acaricides. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Restriction fragment length polymorphism (RFLP) and sequence analyses of the PCR-amplified 16S-23S rDNA intergenic spacer (ITS) were used for differentiating Acidithiobacillus thiooxidans strains from other related acidithiobacilli, including A. ferrooxidans and A. caldus. RFLP fingerprints obtained with AluI, DdeI, HaeIII, HinfI and MspI enabled the differentiation of all Acidithiobacillus reference strains into species groups. The A. thiooxidans strains investigated (metal mine isolates) yielded identical RFLP patterns to the A. thiooxidans type strain (ATCC 19377(T)), except for strain DAMS, which had a distinct pattern for all enzymes tested. Fourteen A. ferrooxidans mine strains were assigned to 3 RFLP groups, the majority of which were grouped with A. ferrooxidans ATCC 23270(T). The spacer region of one representative strain from each of the RFLP groups obtained was subjected to sequence analysis, in addition to eleven additional A. thiooxidans strains isolated from sediment and water samples, and A. caldus DSM 8584(T). The tRNA(IIe) and tRNA(Ala) genes, present in all strains analyzed, showed high sequence similarity. Phylogenetic analysis of the ITS sequences differentiated all three Acidithiobacillus species. Inter- and infraspecific genetic variations detected were mainly due to the size and sequence polymorphism of the ITS3 region. Mantel tests showed no significant correlation between ITS sequence similarity and the geographical origin of strains. The results showed that the 16S-23S rDNA spacer region is a useful target for the development of molecular-based methods aimed at the detection, rapid differentiation and identification of acidithiobacilli. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
This review deals with a comparative analysis of seven genome sequences from plant-associated bacteria. These are the genomes of Agrobacterium tumefaciens, Mesorhizobium loti, Sinorhizobium meliloti, Xanthomonas campestris pv campestris, Xanthomonas axonopodis pv citri, Xylella fastidiosa, and Ralstonia solanacearum. Genome structure and the metabolism pathways available highlight the compromise between the genome size and lifestyle. Despite the recognized importance of the type III secretion system in controlling host compatibility, its presence is not universal in all necrogenic pathogens. Hemolysins, hemagglutinins, and some adhesins, previously reported only for mammalian pathogens, are present in most organisms discussed. Different numbers and combinations of cell wall degrading enzymes and genes to overcome the oxidative burst generally induced by the plant host are characterized in these genomes. A total of 19 genes not involved in housekeeping functions were found common to all these bacteria.