837 resultados para Environmental Variables


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer-182 males and 124 females-were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including "sex" as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate.We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, the identification of two cryptic Iberian amphibians, Discoglossus galganoi Capula, Nascetti, Lanza, Bullini and Crespo, 1985 and Discoglossus jeanneae Busack, 1986, relies on molecular characterization. To provide a means to discern the distributions of these species, we used 385-base-pair sequences of the cytochrome b gene to identify 54 Spanish populations of Discoglossus. These data and a series of environmental variables were used to build up a logistic regression model capable of probabilistically designating a specimen of Discoglossus found in any Universal Transverse Mercator (UTM) grid cell of 10 km × 10 km to one of the two species. Western longitudes, wide river basins, and semipermeable (mainly siliceous) and sandstone substrates favored the presence of D. galganoi, while eastern longitudes, mountainous areas, severe floodings, and impermeable (mainly clay) or basic (limestone and gypsum) substrates favored D. jeanneae. Fifteen percent of the UTM cells were predicted to be shared by both species, whereas 51% were clearly in favor of D. galganoi and 34% were in favor of D. jeanneae, considering odds of 4:1. These results suggest that these two species have parapatric distributions and allow for preliminary identification of potential secondary contact areas. The method applied here can be generalized and used for other geographic problems posed by cryptic species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Montado decline has been reported since the end of the nineteenth century in southern Portugal and increased markedly during the 1980s. Consensual reports in the literature suggest that this decline is due to a number of factors, such as environmental constraints, forest diseases, inappropriate management, and socioeconomic issues. An assessment on the pattern of montado distribution was conducted to reveal how the extent of land management, environmental variables, and spatial factors contributed to montado area loss in southern Portugal from 1990 to 2006. A total of 14 independent variables, presumably related to montado loss, were grouped into three sets: environmental variables, land management variables, and spatial variables. From 1990 to 2006, approximately 90,054 ha disappeared in the montado area, with an estimated annual regression rate of 0.14 % year-1. Variation partitioning showed that the land management model accounted for the highest percentage of explained variance (51.8 %), followed by spatial factors (44.6 %) and environmental factors (35.5 %). These results indicate that most variance in the large-scale distribution of recent montado loss is due to land management, either alone or in combination with environmental and spatial factors. The full GAM model showed that different livestock grazing is one of the most important variables affecting montado loss. This suggests that optimum carrying capacity should decrease to 0.18–0.60 LU ha-1 for livestock grazing in montado under current ecological conditions in southern Portugal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/Rationale Guided by the need-driven dementia-compromised behavior (NDB) model, this study examined influences of the physical environment on wandering behavior. Methods Using a descriptive, cross-sectional design, 122 wanderers from 28 long-term care (LTC) facilities were videotaped 10 to 12 times; data on wandering, light, sound, temperature and humidity levels, location, ambiance, and crowding were obtained. Associations between environmental variables and wandering were evaluated with chi-square and t tests; the model was evaluated using logistic regression. Results In all, 80% of wandering occurred in the resident’s own room, dayrooms, hallways, or dining rooms. When observed in other residents’ rooms, hallways, shower/baths, or off-unit locations, wanderers were likely (60%-92% of observations) to wander. The data were a good fit to the model overall (LR [logistic regression] χ2 (5) = 50.38, P < .0001) and by wandering type. Conclusions Location, light, sound, proximity of others, and ambiance are associated with wandering and may serve to inform environmental designs and care practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Because studies of crowding in long-term care settings are lacking, the authors sought to: (1) generate initial estimates of crowding in nursing homes and assisted living facilities; and (2) evaluate two operational approaches to its measurement. ----- ----- Background: Reactions to density and proximity are complex. Greater density intensifies people's reaction to a situation in the direction (positive or negative) that they would react if the situation were to occur under less dense conditions. People with dementia are especially reactive to the environment. ----- ----- Methods: Using a cross-sectional correlational design in nursing homes and assisted living facilities involving 185 participants, multiple observations (N = 6,455) of crowding and other environmental variables were made. Crowding, location, and sound were measured three times per observation; ambiance was measured once. Data analyses consisted of descriptive statistics, t-tests, and one-way analysis of variance. ----- ----- Results: Crowding estimates were higher for nursing homes and in dining and activity rooms. Crowding also varied across settings and locations by time of day. Overall, the interaction of location and time affected crowding significantly (N = 5,559, df [47, 511], F = 105.69, p < .0001); effects were greater within location-by-hour than between location-by-hour, but the effect explained slightly less variance in Long-Term Care Crowding Index (LTC-CI) estimates (47.41%) than location alone. Crowding had small, direct, and highly significant correlations with sound and with the engaging subscale for ambiance; a similar, though inverse, correlation was seen with the soothing subscale for ambiance. ----- ----- Conclusions: Crowding fluctuates consistent with routine activities such as meals in long-term care settings. Furthermore, a relationship between crowding and other physical characteristics of the environment was found. The LTC-CI is likely to be more sensitive than simple people counts when seeking to evaluate the effects of crowding on the behavior of elders-particularly those with dementia-in long-term care settings. aging in place.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motivation of the study stems from the results reported in the Excellence in Research for Australia (ERA) 2010 report. The report showed that only 12 universities performed research at or above international standards, of which, the Group of Eight (G8) universities filled the top eight spots. While performance of universities was based on number of research outputs, total amount of research income and other quantitative indicators, the measure of efficiency or productivity was not considered. The objectives of this paper are twofold. First, to provide a review of the research performance of 37 Australian universities using the data envelopment analysis (DEA) bootstrap approach of Simar and Wilson (2007). Second, to determine sources of productivity drivers by regressing the efficiency scores against a set of environmental variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background to the Problem: Improving nurses' self-efficacy and job satisfaction may improve the quality of nursing care to patients. Moreover, to work effectively and consistently with professional nursing standards, nurses have to believe they are able to make decisions about their practice. In order to identify what strategies and professional development programmes should be developed and implemented for registered nurses in the Australian context, a comprehensive profile of registered nurses and factors that affect nursing care in Australia needs to be available. However, at present, there is limited information available on a) the perceived caring efficacy and job satisfaction of registered nurses in Australia, and b) the relationships between the demographic variables general self-efficacy, work locus of control, coping styles, the professional nursing practice environment and caring efficacy and job satisfaction of registered nurses in Australia. This is the first study to 1) investigate relationships between caring efficacy and job satisfaction with factors such as general self-efficacy, locus of control and coping, 2) the nursing practice environment in the Australian context and 3) conceptualise a model of caring efficacy and job satisfaction in the Australian context. Research Design and Methods: This study used a two-phase cross-sectional survey design. A pilot study was conducted in order to determine the validity and reliability of the survey instruments and to assess the effectiveness of the participant recruitment process. The second study of the research involved investigating the relationships between the socio-demographic, dependent and independent variables. Socio-demographic variables included age, gender, level of education, years of experience, years in current job, employment status, geographical location, specialty area, health sector, state and marital status. Other independent variables in this study included general self-efficacy, work locus of control, coping styles and the professional nursing practice environment. The dependent variables were job satisfaction and caring efficacy. Results: A confirmatory factor analysis of the Brisbane Practice Environment Measure (B-PEM) was conducted. A five-factor structure of the B-PEM was confirmed. Relationships between socio-demographic variables, caring efficacy and job satisfaction, were identified at the bivariate and multivariable levels. Further, examination using structural equation modelling revealed general self-efficacy, work locus of control, coping style and the professional nursing practice environment contributed to caring efficacy and job satisfaction of registered nurses in Australia. Conclusion: This research contributes to the literature on how socio-demographic, personal and environmental variables (work locus of control, general self-efficacy and the nursing practice environment) influence caring efficacy and job satisfaction in registered nurses in Australia. Caring efficacy and job satisfaction may be improved if general self-efficacy is high in those that have an internal work locus of control. The study has also shown that practice environments that provide the necessary resources improve job satisfaction in nurses. The results have identified that the development and implementation of strategies for professional development and orientation programmes that enhance self-efficacy and work locus of control may contribute to better quality nursing practice and job satisfaction. This may further assist registered nurses towards focusing on improving their practice abilities. These strategies along with practice environments that provide the necessary resources for nurses to practice effectively may lead to better job satisfaction. This information is important for nursing leaders, healthcare organisations and policymakers, as the development and implementation of these strategies may lead to better recruitment and retention of nurses. The study results will contribute to the national and international literature on self-efficacy, job satisfaction and nursing practice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Seasonal changes in cardiovascular disease (CVD) risk factors may be due to exposure to seasonal environmental variables like temperature and acute infections or seasonal behavioural patterns in physical activity and diet. Investigating the seasonal pattern of risk factors should help determine the causes of the seasonal pattern in CVD. Few studies have investigated the seasonal variation in risk factors using repeated measurements from the same individual, which is important as individual and population seasonal patterns may differ. Methods The authors investigated the seasonal pattern in systolic and diastolic blood pressure, heart rate, body weight, total cholesterol, triglycerides, high-density lipoprotein cholesterol, C reactive protein and fibrinogen. Measurements came from 38 037 participants in the population-based cohort, the Tromsø Study, examined up to eight times from 1979 to 2008. Individual and population seasonal patterns were estimated using a cosinor in a mixed model. Results All risk factors had a highly statistically significant seasonal pattern with a peak time in winter, except for triglycerides (peak in autumn), C reactive protein and fibrinogen (peak in spring). The sizes of the seasonal variations were clinically modest. Conclusions Although the authors found highly statistically significant individual seasonal patterns for all risk factors, the sizes of the changes were modest, probably because this subarctic population is well adapted to a harsh climate. Better protection against seasonal risk factors like cold weather could help reduce the winter excess in CVD observed in milder climates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent comment in the Journal of Sports Sciences (MacNamara & Collins, 2011) highlighted some major concerns with the current structure of talent identification and development (TID) programmes of Olympic athletes (e.g. Gulbin, 2008; Vaeyens, Gullich, Warr, & Philippaerts, 2009). In a cogent commentary, MacNamara and Collins (2011) provided a short review of the extant literature, which was both timely and insightful. Specifically, they criticised the ubiquitous one-dimensional ‘physically-biased’ attempts to produce world class performers, emphasising the need to consider a number of key environmental variables in a more multi-disciplinary perspective. They also lamented the wastage of talent, and alluded to the operational and opportunistic nature of current talent transfer programmes. A particularly compelling aspect of the comment was their allusion to high profile athletes who had ‘failed’ performance evaluation tests and then proceeded to succeed in that sport. This issue identifies a problem with current protocols for evaluating performance and is a line of research that is sorely needed in the area of talent development. To understand the nature of talent wastage that might be occurring in high performance programmes in sport, future empirical work should seek to follow the career paths of ‘successful’ and ‘unsuccessful’ products of TID programmes, in comparative analyses. Pertinent to the insights of MacNamara and Collins (2011), it remains clear that a number of questions have not received enough attention from sport scientists interested in talent development, including: (i) why is there so much wastage of talent in such programmes? And (ii), why are there so few reported examples of successful talent transfer programmes? These questions highlight critical areas for future investigation. The aim of this short correspondence is to discuss these and other issues researchers and practitioners might consider, and to propose how an ecological dynamics underpinning to such investigations may help the development of existing protocols...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil-based emissions of nitrous oxide (N2O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment-N2O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N2O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N2O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N2O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N2O emission; and daily soil temperature tended to have a linear positive relationship with daily N2O emission when daily soil temperature was above a threshold of approximately 19°C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N2O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N2O emission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.