982 resultados para Environmental Efficient Urinal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To define a research agenda for creating Resource-Efficient Supply Chains (RESC) by identifying and analysing their key characteristics as well as future research opportunities. Design/methodology/approach: We follow a systematic review method to analyse the literature and to understand RESC taking a substantive theory approach. Our approach is grounded in a specific domain, the agri-food sector, because it is an intensive user of an extensive range of resources. Findings: The review shows that literature has looked at the use of resources primarily from the environmental impact perspective. It shows a lack of understanding of the specific RESC characteristics, and concludes more research is needed on multi-disciplinary methods for resource use and impact analyses as well as assessment methods for resource sensitivity and responsiveness. There is a need to explore whether or not, and how, logistics/supply chain decisions will affect the overall configuration of future food supply chains in an era of resource scarcity and depletion and what the trade-offs will be. Research limitations/implications: The paper proposes an agenda for future research in the area of resource–efficient supply chain. The framework proposed along with the key characteristics identified for RESC can be applied to other sectors. Practical implications: Our research should facilitate further understanding of the implications and trade-offs of supply chain decisions taken on the use of resources by supply chain managers. Originality/value: The paper explores the interaction between supply chains and natural resources and also defines the key characteristics of RESC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we demonstrate a facile template-free sonochemical strategy to synthesize mesoporous g-C3N4 with a high surface area and enhanced photocatalytic activity. The TEM and nitrogen adsorption–desorption studies confirm mesoporous structure in g-C3N4 body. The photocatalytic activity of mesoporous g-C3N4 is almost 5.5 times higher than that of bulk g-C3N4 under visible-light irradiation. The high photocatalytic performance of the mesoporous g-C3N4 was attributed to the much higher specific surface area, efficient adsorption ability and the unique interfacial mesoporous structure which can favour the absorption of light and separation of photoinduced electron–hole pairs more effectively. A possible photocatalytic mechanism was discussed by the radicals and holes trapping experiments. Interestingly, the synthesized mesoporous g-C3N4 possesses high reusability. Hence the mesoporous g-C3N4 can be a promising photocatalytic material for practical applications in water splitting as well as environmental remediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gra­dients of resources (such as water and nutrient limitation) and regulators (such as salinity and sul­fide toxicity). We tested the variability of man­grove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients repre­sented by limited phosphorus concentrations com­bined with high sulfide concentrations, respec­tively. Foliar d13C ratios exhibited a range from ­ 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differ­ences in dissolved inorganic nitrogen, soluble reac­tive phosphorus, and sulfide porewater concentra­tions. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salin­ity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a con­founding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape fac­tors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should ac­count for watershed-specific organic inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expected damages of environmental risks depend both on their intensities and probabilities. There is very little control over probabilities of climate related disasters such as hurricanes. Therefore, researchers of social science are interested identifying preparation and mitigation measures that build human resilience to disasters and avoid serious loss. Conversely, environmental degradation, which is a process through which the natural environment is compromised in some way, has been accelerated by human activities. As scientists are finding effective ways on how to prevent and reduce pollution, the society often fails to adopt these effective preventive methods. Researchers of psychological and contextual characterization offer specific lessons for policy interventions that encourage human efforts to reduce pollution. This dissertation addresses four discussions of effective policy regimes encouraging pro-environmental preference in consumption and production, and promoting risk mitigation behavior in the face of natural hazards. The first essay describes how the speed of adoption of environment friendly technologies is driven largely by consumers' preferences and their learning dynamics rather than producers' choice. The second essay is an empirical analysis of a choice experiment to understand preferences for energy efficient investments. The empirical analysis suggests that subjects tend to increase energy efficient investment when they pay a pollution tax proportional to the total expenditure on energy consumption. However, investments in energy efficiency seem to be crowded out when subjects have the option to buy health insurance to cover pollution related health risks. In context of hurricane risk mitigation and in evidence of recently adopted My Safe Florida Home (MSFH) program by the State of Florida, the third essay shows that households with home insurance, prior experience with damages, and with a higher sense of vulnerability to be affected by hurricanes are more likely to allow home inspection to seek mitigation information. The fourth essay evaluates the impact of utility disruption on household well being based on the responses of a household-level phone survey in the wake of hurricane Wilma. Findings highlight the need for significant investment to enhance the capacity of rapid utility restoration after a hurricane event in the context of South Florida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One challenge related to transit planning is selecting the appropriate mode: bus, light rail transit (LRT), regional express rail (RER), or subway. This project uses data from life cycle assessment to develop a tool to measure energy requirements for different modes of transit, on a per passenger-kilometer basis. For each of the four transit modes listed, a range of energy requirements associated with different vehicle models and manufacturers was developed. The tool demonstrated that there are distinct ranges where specific transit modes are the best choice. Diesel buses are the clear best choice from 7-51 passengers, LRTs make the most sense from 201-427 passengers, and subways are the best choice above 918 passengers. There are a number of other passenger loading ranges where more than one transit mode makes sense; in particular, LRT and RER represent very energy-efficient options for ridership ranging from 200 to 900 passengers. The tool developed in the thesis was used to analyze the Bloor-Danforth subway line in Toronto using estimated ridership for weekday morning peak hours. It was found that ridership across the line is for the most part actually insufficient to justify subways over LRTs or RER. This suggests that extensions to the existing Bloor-Danforth line should consider LRT options, which could service the passenger loads at the ends of the line with far greater energy efficiency. It was also clear that additional destinations along the entire transit line are necessary to increase the per passenger-kilometer energy efficiency, as the current pattern of commuting to downtown leaves much of the system underutilized. It is hoped that the tool developed in this thesis can be used as an additional resource in the transit mode decision-making process for many developing transportation systems, including the transit systems across the GTHA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Policy makers are often called upon to navigate between scientists’ urgent calls for long-term concerted action to reduce the environmental impacts due to resource use, and the public’s concerns over policies that threaten lifestyles or jobs. Against these political challenges, resource efficiency policy making is often a changeable and even chaotic process, which has fallen short of the political ambitions set by democratically elected governments. This article examines the importance of paradigms in understanding how the public collectively responds to new policy proposals, such as those developed within the project DYNAmic policy MiXes for absolute decoupling of environmental impact of EU resource use from economic growth (DYNAMIX). The resulting proposed approach provides a framework to understand how different concerns and worldviews converge within public discourse, potentially resulting in paradigm change. Thus an alternative perspective on how resource efficiency policy can be development is proposed, which envisages early policies to lay the ground for future far-reaching policies, by altering the underlying paradigm context in which the public receive and respond to policy. The article concludes by arguing that paradigm change is more likely if the policy is conceived, framed, designed, analyzed, presented, and evaluated from the worldview or paradigm pathway that it seeks to create (i.e. the destination paradigm).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores city dweller aspirations for cities of the future in the context of global commitments to radically reduce carbon emissions by 2050; cities contribute the vast majority of these emissions and a growing bulk of theworld's population lives in cities. The particular challenge of creating a carbon reduced future in democratic countries is that the measures proposed must be acceptable to the electorate. Such acceptability is fostered if carbon reduced ways of living are also felt to bewellbeing maximising. Thus the objective of the paper is to explore what kinds of cities people aspire to live in, to ascertain whether these aspirations align with or undermine carbon reduced ways of living, as well as personal wellbeing. Using a novel free associative technique, city aspirations are found to cluster around seven themes, encompassing physical and social aspects. Physically, people aspire to a city with a range of services and facilities, green and blue spaces, efficient transport, beauty and good design. Socially, people aspire to a sense of community and a safe environment. An exploration of these themes reveals that only a minority of the participants' aspirations for cities relate to lowering carbon or environmental wellbeing. Far more consensual is emphasis on, and a particular vision of, aspirations that will bring personal wellbeing. Furthermore, city dweller aspirations align with evidence concerning factors that maximise personal wellbeing but, far less, with those that produce lowcarbonways of living. In order to shape a lower carbon future that city dwellers accept the potential convergence between environmental and personal wellbeing will need to be capitalised on: primarily aversion to pollution and enjoyment of communal green space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

User behaviour is a significant determinant of a product’s environmental impact; while engineering advances permit increased efficiency of product operation, the user’s decisions and habits ultimately have a major effect on the energy or other resources used by the product. There is thus a need to change users’ behaviour. A range of design techniques developed in diverse contexts suggest opportunities for engineers, designers and other stakeholders working in the field of sustainable innovation to affect users’ behaviour at the point of interaction with the product or system, in effect ‘making the user more efficient’. Approaches to changing users’ behaviour from a number of fields are reviewed and discussed, including: strategic design of affordances and behaviour-shaping constraints to control or affect energyor other resource-using interactions; the use of different kinds of feedback and persuasive technology techniques to encourage or guide users to reduce their environmental impact; and context-based systems which use feedback to adjust their behaviour to run at optimum efficiency and reduce the opportunity for user-affected inefficiency. Example implementations in the sustainable engineering and ecodesign field are suggested and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A smart solar photovoltaic grid system is an advent of innovation coherence of information and communications technology (ICT) with power systems control engineering via the internet [1]. This thesis designs and demonstrates a smart solar photovoltaic grid system that is selfhealing, environmental and consumer friendly, but also with the ability to accommodate other renewable sources of energy generation seamlessly, creating a healthy competitive energy industry and optimising energy assets efficiency. This thesis also presents the modelling of an efficient dynamic smart solar photovoltaic power grid system by exploring the maximum power point tracking efficiency, optimisation of the smart solar photovoltaic array through modelling and simulation to improve the quality of design for the solar photovoltaic module. In contrast, over the past decade quite promising results have been published in literature, most of which have not addressed the basis of the research questions in this thesis. The Levenberg-Marquardt and sparse based algorithms have proven to be very effective tools in helping to improve the quality of design for solar photovoltaic modules, minimising the possible relative errors in this thesis. Guided by theoretical and analytical reviews in literature, this research has carefully chosen the MatLab/Simulink software toolbox for modelling and simulation experiments performed on the static smart solar grid system. The auto-correlation coefficient results obtained from the modelling experiments give an accuracy of 99% with negligible mean square error (MSE), root mean square error (RMSE) and standard deviation. This thesis further explores the design and implementation of a robust real-time online solar photovoltaic monitoring system, establishing a comparative study of two solar photovoltaic tracking systems which provide remote access to the harvested energy data. This research made a landmark innovation in designing and implementing a unique approach for online remote access solar photovoltaic monitoring systems providing updated information of the energy produced by the solar photovoltaic module at the site location. In addressing the challenge of online solar photovoltaic monitoring systems, Darfon online data logger device has been systematically integrated into the design for a comparative study of the two solar photovoltaic tracking systems examined in this thesis. The site location for the comparative study of the solar photovoltaic tracking systems is at the National Kaohsiung University of Applied Sciences, Taiwan, R.O.C. The overall comparative energy output efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic monitoring system as observed at the research location site is about 72% based on the total energy produced, estimated money saved and the amount of CO2 reduction achieved. Similarly, in comparing the total amount of energy produced by the two solar photovoltaic tracking systems, the overall daily generated energy for the month of July shows the effectiveness of the azimuthal-altitude tracking systems over the 450 stationary solar photovoltaic system. It was found that the azimuthal-altitude dual-axis tracking systems were about 68.43% efficient compared to the 450 stationary solar photovoltaic systems. Lastly, the overall comparative hourly energy efficiency of the azimuthal-altitude dual-axis over the 450 stationary solar photovoltaic energy system was found to be 74.2% efficient. Results from this research are quite promising and significant in satisfying the purpose of the research objectives and questions posed in the thesis. The new algorithms introduced in this research and the statistical measures applied to the modelling and simulation of a smart static solar photovoltaic grid system performance outperformed other previous works in reviewed literature. Based on this new implementation design of the online data logging systems for solar photovoltaic monitoring, it is possible for the first time to have online on-site information of the energy produced remotely, fault identification and rectification, maintenance and recovery time deployed as fast as possible. The results presented in this research as Internet of things (IoT) on smart solar grid systems are likely to offer real-life experiences especially both to the existing body of knowledge and the future solar photovoltaic energy industry irrespective of the study site location for the comparative solar photovoltaic tracking systems. While the thesis has contributed to the smart solar photovoltaic grid system, it has also highlighted areas of further research and the need to investigate more on improving the choice and quality design for solar photovoltaic modules. Finally, it has also made recommendations for further research in the minimization of the absolute or relative errors in the quality and design of the smart static solar photovoltaic module.