931 resultados para Energy flow
Resumo:
Synthesizing data from multiple studies generates hypotheses about factors that affect the distribution and abundance of species among ecosystems. Snails are dominant herbivores in many freshwater ecosystems, but there is no comprehensive review of snail density, standing stock, or body size among freshwater ecosystems. We compile data on snail density and standing stock, estimate body size with their quotient, and discuss the major pattern that emerges. We report data from 215 freshwater ecosystems taken from 88 studies that we placed into nine categories. Sixty-five studies reported density, seven reported standing stock, and 16 reported both. Despite the breadth of studies, spatial and temporal sampling scales were limited. Researchers used 25 different sampling devices ranging in area from 0.0015 to 2.5 m2. Most ecosystem categories had similar snail densities, standing stocks, and body sizes suggesting snails shared a similar function among ecosystems. Caribbean karst wetlands were a striking exception with much lower density and standing stock, but large body size. Disparity in body size results from the presence of ampullariids in Caribbean karst wetlands suggesting that biogeography affects the distribution of taxa, and in this case size, among aquatic ecosystems. We propose that resource quality explains the disparity in density and standing stock between Caribbean karst wetlands and other categories. Periphyton in Caribbean karst wetlands has high carbon-to-phosphorous ratios and defensive characteristics that inhibit grazers. Unlike many freshwater ecosystems where snails are key grazers, we hypothesize that a microbial loop captures much of the primary production in Caribbean karst wetlands.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Pulse subsidies account for a substantial proportion of resource availability in many systems, having persistent and cascading effects on consumer population dynamics, and energy flow within and across ecosystem boundaries. Although the importance of pulsed resource subsidies is well-established, the mechanisms that regulate resource fluxes across ecosystem boundaries are not well understood. The aim of our study was to determine the extent that marsh consumers regulated a marsh prey subsidy to estuarine consumers in the oligohaline reaches of an Everglades estuary. We characterized a marsh pulsed subsidy of cyprinodontoid, invertebrate and sunfish prey that move into the upper estuary from adjacent drying marshes. In response to the prey pulse, we examined the numerical, fitness and dietary responses of three focal consumers in the upper estuary; two marsh species (largemouth bass and bowfin) that accompanied the subsidy as a result of marsh drying, and one estuarine consumer (snook). At the onset of marsh drying and the prey subsidy, estuarine consumers switched diets to consume the larger marsh prey (sunfishes), while bass and bowfin maintained similar diets (cyprinodontoids and invertebrates respectively) than pre and post subsidy. From the consumption of this subsidy, bass (marsh species) and snook (estuarine species) exhibited fitness gains while bowfin did not. Although both marsh and estuarine consumers benefitted from the subsidy, we found evidence that freshwater consumers shunted some of the subsidy away from snook. Of the prey sampled in consumer stomachs, 41% of marsh prey biomass was eaten by marsh consumers, while 59% was consumed by the estuarine consumer. We conclude that the amount of the marsh prey available to estuarine consumers may be greater in the absence of marsh consumers, thus the magnitude of the prey subsidy could depend on the dynamics of the marsh consumers from donor communities.
Resumo:
Megabenthos plays a major role in the overall energy flow on Arctic shelves, but information on megabenthic secondary production on large spatial scales is scarce. Here, we estimated for the first time megabenthic secondary production for the entire Barents Sea shelf by applying a species-based empirical model to an extensive dataset from the joint Norwegian? Russian ecosystem survey. Spatial patterns and relationships were analyzed within a GIS. The environmental drivers behind the observed production pattern were identified by applying an ordinary least squares regression model. Geographically weighted regression (GWR) was used to examine the varying relationship of secondary production and the environment on a shelfwide scale. Significantly higher megabenthic secondary production was found in the northeastern, seasonally ice-covered regions of the Barents Sea than in the permanently ice-free southwest. The environmental parameters that significantly relate to the observed pattern are bottom temperature and salinity, sea ice cover, new primary production, trawling pressure, and bottom current speed. The GWR proved to be a versatile tool for analyzing the regionally varying relationships of benthic secondary production and its environmental drivers (R² = 0.73). The observed pattern indicates tight pelagic? benthic coupling in the realm of the productive marginal ice zone. Ongoing decrease of winter sea ice extent and the associated poleward movement of the seasonal ice edge point towards a distinct decline of benthic secondary production in the northeastern Barents Sea in the future.
Resumo:
Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
The linked concepts of 'microbial loop' and 'protozoan trophic link' have been very well documented in filter-feeding microzooplankton such as copepods, but have not been applied to energy transfer to benthic suspension-feeding macrofauna, with the exception of the recent demonstration of heterotrophic flagellate assimilation by mussels. The oyster Crassostrea gigas obtains energy resources by filtering microalgae (similar to 5 to 100 mu m). However, in turbid estuaries, light-limited phytoplanktonic production cannot entirely account for oyster energy requirements. Conversely, picoplankters (<2 mu m), which are main effecters of coastal energy flow and matter cycling, are not efficiently retained by oyster filtration. Ciliate protozoal as both micro-sized cells (similar to 5 to 100 run) and bacteria grazers, may represent a major intermediary in trophic transfer between picoplankton and metazoa. The ciliate Uronema was intensely cultured and labelled, using the cyanobacteria Synechococcus as an auto-fluorescent biomarker. The labelled ciliates were offered as potential prey to oysters. We report here the first experimental evidence of a significant retention and ingestion of ciliates by oysters, supporting the role of protozoa as a realistic trophic link between picoplankters and filter-feeding bivalves and thus enhancing their potential importance in estuarine microbial food webs.
Resumo:
Com a presente evolução das railguns na Marinha dos Estados Unidos da América e possível instalação em seus navios num futuro muito próximo, outras marinhas se seguirão. Creio que será do interesse da Marinha Portuguesa acompanhar esta evolução tecnológica, considerando as vantagens que advém da adoção deste tipo de armamento. Neste documento são abordados os princípios básicos subjacentes ao funcionamento da railgun, com principal foco nas questões eletrodinâmicas. Pretende-se adquirir familiaridade com este novo tipo de armamento através do estudo crítico dos seus princípios de funcionamento. O princípio básico de funcionamento de uma railgun, à primeira vista, parece bastante simples, à luz da aplicação imediata da expressão da força de Lorentz sobre um condutor percorrido por corrente elétrica. No entanto, tudo se torna mais complicado no caso de uma variação rápida dos parâmetros envolvidos (regime transitório), que exige uma análise mais aprofundada do comportamento da corrente, campos elétrico e magnético, e todos os materiais envolvidos neste sistema. Este trabalho envolveu ainda a construção de duas railguns, uma primeira de dimensões mais pequenas para ganhar familiaridade com o sistema, e uma última de dimensões de laboratório na qual foram feitos vários disparos para testar diferentes tipos de material e dimensões de projétil. Em suma, é demonstrado neste documento uma análise, no domínio do tempo, da distribuição espacial do campo eletromagnético, corrente elétrica e consequente fluxo de energia, complementados por uma parte experimental.
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region. It is pointed out that the static force-free field is insufficient for a discussion of storage processes, and also the pure unsteady plasma rotation is not a perfect approach. In order to analyze the energy storage, we must consider the addition of poloidal plasma motion. The paper shows that because the unsteady poloidal flow is added and coupling occurs between the magnetic field and both the toroidal and the poloidal plasma flows, an unsteady process is maintained which changes the force-free factor with time. Hence, the energy in the lower levels can be transferred to the upper levels, and a considerable energy can be stored in the active region. Finally, another storage process is given which is due to the pure poloidal flow. The article shows that even if there is no twisted magnetic line of force, the energy in the lower levels may still be transferred to the upper levels and stored there.
Resumo:
The general equations of biomass and energy transfer for an n-species, closed ecosystem are written. It is demonstrated how in "ecological time" the parameters describing the dynamics of biomass transfer are related to the parameters of energy transfer, such as respiration, fixation, and energy content. This relationship is determinate for the straight-chain ecosystem, and a simple example is worked out. The results show how the density dependent terms in population dynamics arise naturally, and how the stable system exhibits a hierarchy in energy per unit biomass. A procedure is proposed for extending the theory to include webbed systems, and the particular difficulties involved in the extension are brought before the scientific community for discussion.
Resumo:
We present a map of the transformation of energy in China as a Sankey diagram. After a review of previous work, and a statement of methodology, our main work has been the identification, evaluation, and treatment of appropriate data sources. This data is used to construct the Sankey diagram, in which flows of energy are traced from energy sources through end-use conversion devices, passive systems and final services to demand drivers. The resulting diagram provides a convenient and clear snapshot of existing energy transformations in China which can usefully be compared with a similar global analysis and which emphasises the potential for improvements in energy efficiency in 'passive systems'. More broadly, it gives a basis for examining and communicating future energy scenarios, including changes to demand, changes to the supply mix, changes in efficiency and alternative provision of existing services. © 2012 Elsevier Ltd.
Resumo:
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.