916 resultados para Energy and Fluids
Resumo:
Ecosystems provide a range of goods and services that contribute toward human well-being through the environmental, economic, and cultural benefits they provide. Although the importance of these services is increasingly being recognized by governments, our understanding of the implications of different energy technologies on the provision of these services is limited. The chapter presents an assessment of four key energy technologies that considers the ecosystem services impacts across the entire lifecycle. In demonstrating the global implications of these energy technologies, the chapter makes the case that assessment of UK energy policy must consider a broad range of environmental and societal indicators both within the UK and overseas.
Resumo:
Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy.
Resumo:
(1x1) and (2x1) reconstructions of the (001) SrTiO3 surface were studied using the first-principles full-potential linear muffin-tin orbital method. Surface energies were calculated as a function of TiO2 chemical potential, oxygen partial pressure and temperature. The (1x1) unreconstructed surfaces were found to be energetically stable for many of the conditions considered. Under conditions of very low oxygen partial pressure the (2x1) Ti2O3 reconstruction [Martin R. Castell, Surf. Sci. 505, 1 (2002)] is stable. The question as to why STM images of the (1x1) surfaces have not been obtained was addressed by calculating charge densities for each surface. These suggest that the (2x1) reconstructions would be easier to image than the (1x1) surfaces. The possibility that the presence of oxygen vacancies would destabilise the (1x1) surfaces was also investigated. If the (1x1) surfaces are unstable then there exists the further possibility that the (2x1) DL-TiO2 reconstruction [Natasha Erdman Nature (London) 419, 55 (2002)] is stable in a TiO2-rich environment and for p(O2)>10(-18) atm.
Resumo:
The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.
Resumo:
A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-de Gennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, extremely efficient in our implementation with parallel fast Fourier transform methods, and produces highly accurate results. For high dimensionality or low symmetry the time-dependent approach is a more practical computational scheme and produces accurate and reliable data. The method is suitable for general trap geometries, condensate flows and condensates permeated with defects and vortex structures.
Resumo:
Two manganese steels were investigated: Fe-19.7%Mn (VM339A) and Fe-19.7%Mn stabilized with 0.056%C, 0.19%Ti and 0.083%Al (VM339B). The toughness of VM339A was higher than VM339B, but VM339B had higher hardness. Tempering does not affect the toughness of the alloys. SEM images of the fracture surface for both the alloys revealed ductile fractures. A further alloy with a lower manganese content, Fe-8.46%Mn-0.24%Nb-0.038%C, and thus even lower cost than the conventional 3.5Ni cryogenic steel, was tested for its impact toughness after heat treatment at 600°C, giving promising results.
Resumo:
The standard local density approximation and generalized gradient approximations fail to properly describe the dissociation of an electron pair bond, yielding large errors (on the order of 50 kcal/mol) at long bond distances. To remedy this failure, a self-consistent Kohn-Sham (KS) method is proposed with the exchange-correlation (xc) energy and potential depending on both occupied and virtual KS orbitals. The xc energy functional of Buijse and Baerends [Mol. Phys. 100, 401 (2002); Phys. Rev. Lett. 87, 133004 (2001)] is employed, which, based on an ansatz for the xc-hole amplitude, is able to reproduce the important dynamical and nondynamical effects of Coulomb correlation through the efficient use of virtual orbitals. Self-consistent calculations require the corresponding xc potential to be obtained, to which end the optimized effective potential (OEP) method is used within the common energy denominator approximation for the static orbital Green's function. The problem of the asymptotic divergence of the xc potential of the OEP when a finite number of virtual orbitals is used is addressed. The self-consistent calculations reproduce very well the entire H-2 potential curve, describing correctly the gradual buildup of strong left-right correlation in stretched H-2. (C) 2003 American Institute of Physics.