988 resultados para Energy Intensity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of organic D-pi-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence characteristics and the energy transfer between Gd3+ and Eu2+ in BaLiF3,, matrix have been investigated. A series of concentrations of Gd3+ ion with a fixed Eu2+ concentration doped in BaLiF3 : Gd3+, Eu2+ has been studied. When the doping concentration for Gd3+ was 0.3%,, the system reached the highest energy transfer efficiency. Due to the competitive absorption for the Gd3+ and the Eu2+ ions in BaLiF3 : Gd3+ : Eu2+, when the doping concentration for Gd3+ ion exceeded 0.3 Vo, the continuously increasing concentration of Gd3+ ions caused the competitive absorption ratio for Gd3+ increasing and the emission intensity of Eu2+ decreasing. The energy transfer processes were discussed, while the transfer probability was calculated to be 1.35 X 10(5) s(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When CaS:Sm3+, Eu2+ is excited at 476.5 nm (Ar+), the emission spectra taken at room temperature and at 77 K are different, indicating that there are two competitive energy transfer processes-Sm3+ --> Eu2+ and Eu2+ --> Sm3+ with phonon participation. So, the luminescence intensity of Sm3+ increases first, and then decreases as the concentration of Eu2+ is increasing. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The luminescence of Ce3+ and Ce3+, Mn2+ co-doped BaB8O13 and SrB4O7 prepared in air is studied. The results show that tetravalent cerium ion can he reduced to trivalent state in the hosts and gives rise to efficient luminescence. Energy transfer between Ce3+ and Mn2+ is possible. Mn2+ ions can be efficiently sensitized by Ce3+ and exhibit green and red emissions which implied that Mn2+ occupied the crystallographic sites of cations and boron sites of the anoins, respectively. The intensity ratio of red to Been emission in matrix increases with the increasing of manganese concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new amphiphilic rare earth complexes with only two organic long chains Ln (MOP)(2)Cl (MOP=monooctadecyl phthalate, Ln=Eu, Tb, Gd) were synthesized and characterized by elemental analysis. The complexes (Eu, Tb) showed good luminescence property with long fluorescence lifetime, whereas the intensity and lifetime of Tb complex are greater than those of Eu complex, By measuring the triplet energy levels of ligand based on energy transfer mechanism, above phenomena have been well explained. The Langmuir films of the complexes on the air/water interface were also studied and the results show that all of them have good film-forming property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of chromophore-labeled LLDPE and chromophore-labeled PMMA compatibilized by block copolymer of hydrogenated polybutadiene and methyl methacrylate (PHB-b-PMMA) were studied by nonradiative energy transfer (NRET) technique. The ratio of fluorescence intensity of the donor at 336 nm and the acceptor at 408 nm (I-D/I-A) decreased with an increase in block copolymer content. At about 8 wt.-% block copolymer content I-D/I-A reached a minimum value, indicating the interdiffusion of LLDPE chains and PMMA chains in the interface is strongest. The influence of temperature on the interdiffusion of polymer chains in the interface was also examined. Samples quenched in liquid nitrogen from 140 degrees C showed lower energy transfer efficiencies than those annealed from 150 degrees C to room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral properties of Gd3+, Dy3+ and Eu3+ ions in SrGdAlO4 are reported in detail A cooperative vibronic transition of Gd3+ and the emission from the higher D-5(J) (J=1, 2, 3) levels of Eu3+ were observed. Energy transfer occurs from Gd3+ to Dy3+ and to Eu3+. The influence of Gd3+ and Dy3+ concentrations on the luminescence intensity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preservation of beam quality in a plasma wakefield accelerator driven by ultrahigh intensity and ultralow emittance beams, characteristic of future particle colliders, is a challenge. The electric field of these beams leads to plasma ions motion, resulting in a nonlinear focusing force and emittance growth of the beam. We propose to use an adiabatic matching section consisting of a short plasma section with a decreasing ion mass to allow for the beam to remain matched to the focusing force. We use analytical models and numerical simulations to show that the emittance growth can be significantly reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of energetic proton production resulting from the interaction of high-intensity laser pulses with foil targets are described. Through the use of layered foil targets and heating of the target material we are able to distinguish three distinct populations of protons. One high energy population is associated with a proton source near the front surface of the target and is observed to be emitted with a characteristic ring structure. A source of typically lower energy, lower divergence protons originates from the rear surface of the target. Finally, a qualitatively separate source of even lower energy protons and ions is observed with a large divergence. Acceleration mechanisms for these separate sources are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionization dynamics of H2 + exposed to high-intensity, high-frequency, ultrashort laser pulses is investigated with two theoretical approaches. The time-dependent Schrödinger equation is solved by a direct numerical method, and a simple two-center interference-diffraction model is studied. The energy and angular distributions of the photoelectron for various internuclear distances and relative orientations between the internuclear axis of the molecule and the polarization of the field are calculated. The main features of the photoelectron spectrum pattern are described well by the interference-diffraction model, and excellent quantitative agreement between the two methods is found. The effect of quantal vibration on the photoelectron spectrum is also calculated. We find that vibrational average produces some broadening of the main features, but that the patterns remain clearly distinguishable.