977 resultados para Endothelial-cell-cultures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dibutyltin (DBT) compounds are used primarily as stabilizers for polyvinyl chloride (PVC) plastics. Small quantities can be released from PVC containers into stored liquids. The neurotoxicological potential of DBT was tested in aggregating brain cell cultures after a 10-day treatment with concentrations ranging from 10(-10) to 10(-6)m, either during an early developmental period, or during a phase of advanced maturation. Changes in protein content, DNA labelling and cell type-specific enzyme activities were measured as end points. DBT caused general cytotoxicity at 10(-6)m in both immature and differentiated cultures. At 10(-7)m, it affected the myelin content and the cholinergic neurons in both states of maturation, while GABAergic neurons remained unchanged. Astrocyte and oligodendrocyte markers were diminished at 10(-7)m of DBT exclusively in immature cultures. DBT uptake by undifferentiated and differentiated cells was similar at this concentration. Whereas trimethyltin (TMT) is known to induce gliosis and triethyltin (TET) to cause demyelination and affect GABAergic neurons, DBT appeared to be more toxic than TMT, and to present a distinct toxicological pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of isolated beta integrin cytoplasmic domains in cultured endothelial cells was reported to induce cell detachment and death. To test whether cell death was the cause or the consequence of cell detachment, we expressed isolated integrin beta1 cytoplasmic and transmembrane domains (CH1) in cultured human umbilical vein endothelial cells (HUVEC), and monitored detachment, viability, caspase activation and signaling. CH1 expression induced dose-dependent cell detachment. At 24 h over 90% of CH1-expressing HUVEC were detached but largely viable (>85%). No evidence of pro-caspase-8,-3, and PARP cleavage or suppression of phosphorylation of ERK, PKB and Ikappa-B was observed. The caspase inhibitor z-VAD did not prevent cell detachment. At 48 h, however, CH1-expressing cells were over 50% dead. As a comparison trypsin-mediated detachment resulted in a time-dependent cell death, paralleled by caspase-3 activation and suppression of ERK, PKB and Ikappa-B phosphoyrylation at 24 h or later after detachment. HUVEC stimulation with agents that strengthen integrin-mediated adhesion (i.e. PMA, the Src inhibitor PP2 and COMP-Ang1) did not prevent CH1-induced detachment. Expression of CH1 in rat carotid artery endothelial cells in vivo caused endothelial cell detachment and increased nuclear DNA fragmentation among detached cells. A construct lacking the integrin cytoplasmic domain (CH2) had no effect on adhesion and cell viability in vitro and in vivo. These results demonstrate that isolated beta1 cytoplasmic domain expression induces caspase-independent detachment of viable endothelial cells and that death is secondary to detachment (i.e. anoikis). They also reveal an essential role for integrins in the adhesion and survival of quiescent endothelial cells in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.¦METHODS AND RESULTS: Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1.¦CONCLUSION: Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demyelinative potential of the cytokines interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) has been investigated in myelinating aggregate brain cell cultures. Treatment of myelinated cultures with these cytokines resulted in a reduction in myelin basic protein (MBP) content. This effect was additively increased by anti-myelin/oligodendrocyte glycoprotein (alpha-MOG) in the presence of complement. Qualitative immunocytochemistry demonstrated that peritoneal macrophages, added to the fetal telencephalon cell suspensions at the start of the culture period, successfully integrated into aggregate cultures. Supplementing the macrophage component of the cultures in this fashion resulted in increased accumulation of MBP. The effect of IFN-gamma on MBP content of cultures was not affected by the presence of macrophages in increased numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine exerting pleiotropic effects on endothelial cells. Depending on the vascular context it can induce endothelial cell activation and survival or death. The microenvironmental cues determining whether endothelial cells will survive or die, however, have remained elusive. Here we report that integrin ligation acts permissive for TNF-induced protein kinase B (PKB/Akt) but not nuclear factor (NF)-kappaB activation. Concomitant activation of PKB/Akt and NF-kappaB is essential for the survival of endothelial cells exposed to TNF. Active PKB/Akt strengthens integrin-dependent endothelial cell adhesion, whereas disruption of actin stress fibers abolishes the protective effect of PKB/Akt. Integrin-mediated adhesion also represses TNF-induced JNK activation, but JNK activity is not required for cell death. The alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 sensitizes endothelial cells to TNF-dependent cytotoxicity and active PKB/Akt attenuates this effect. Interferon gamma synergistically enhanced TNF-induced endothelial cell death in all conditions tested. Taken together, these observations reveal a novel permissive role for integrins in TNF-induced PKB/Akt activation and prevention of TNF-induced death distinct of NF-kappaB, and implicate the actin cytoskeleton in PKB/Akt-mediated cell survival. The sensitizing effect of EMD121974 on TNF cytotoxicity may open new perspectives to the therapeutic use of TNF as anticancer agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperammonemia in the brain leads to poorly understood alterations of nitric oxide (NO) synthesis. Arginine, the substrate of nitric oxide synthases, might be recycled from the citrulline produced with NO by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL). The regulation of AS and AL genes during hyperammonemia is unknown in the brain. We used brain cell aggregates cultured from dissociated telencephalic cortex of rat embryos to analyze the regulation of AS and AL genes in hyperammonemia. Using RNase protection assay and non-radioactive in situ hybridization on aggregate cryosections, we show that both AS and AL genes are induced in astrocytes but not in neurons of aggregates exposed to 5 mM NH4Cl. Our work suggests that the hyperammonemic brain might increase its recycling of citrulline to arginine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The vascular endothelial growth factor (VEGF) is a prominent¦contributor of tumor angiogenesis. VEGF induces endothelial cell migration,¦proliferation and survival, which are critical steps for the development of new¦blood vessels, through the activation of the Mek/Erk and PI3K/Akt signaling¦pathways. Recent findings have demonstrated that mTORC2 regulates Akt and¦Erk in endothelial cells. The role of mTORC2 in VEGF-mediated endothelial¦cell responses has however not been characterized.¦Methods: We used human umbilical vein endothelial cells (HUVEC). The¦effects of VEGF on the Mek/Erk and PI3K/Akt pathway were analyzed by¦Western blot. Inhibition of mTORC2 was achieved using small interfering¦RNAs to rictor. Cell proliferation rate was assessed by BrdU incorporation and¦immunocytofluorescence. Apoptosis rate was determined by ELISA as well as¦propidium iodine staining and FACS analysis. Migration of endothelial cells¦was evaluated using a modified Boyden chamber assay.¦Results:Wefound thatVEGF activatesmTORC2 in endothelial cells. Indeed,¦treatment of endothelial cells with VEGF increases Akt phosphorylation, a¦downstream effector of mTORC2. We have further determined the role¦of mTORC2 in VEGF signaling by knocking down rictor, a component¦of mTORC2. We observed that VEGF failed to activate Akt and Erk in¦endothelial cells transfected with rictor siRNA. To next analyze the functional¦significance of mTORC2 inhibition on VEGF-mediated endothelial cell¦responses we performed proliferation, survival and migration assays. We found¦that VEGF failed to induce endothelial cell proliferation, survival and migration¦in endothelial cell lacking mTORC2 activity.¦Conclusion: These results show that mTORC2 is an important signaling¦intermediary in VEGF-induced endothelial cell responses and thus represents¦an interesting target to block VEGF-induced angiogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregating brain cell cultures of fetal rat telencephalon can be grown in a chemically defined medium for extended periods of time. After a phase of intense mitotic activity, these three-dimensional cell cultures undergo extensive morphological differentiation, including synaptogenesis and myelination. To study the developmental toxicity of organophosphorus compounds (OP), aggregating brain cell cultures were treated with parathion. Protein content and cell type-specific enzyme activities were not affected up to a concentration of 10(5) M. Gliosis, characterized by an increased staining for glial fibrillary acidic protein (GFAP), was observed in immature and in differentiated cells. In contrast, uridine incorporation and myelin basic protein (MBP) immunoreactivity revealed strong differences in sensitivity between these two developmental stages. These results are in agreement with the view that in vivo the development-dependent toxicity is not only due to changes in hepatic detoxification, but also to age-related modifications in the susceptibility of the different populations of brain cells. Furthermore, they underline the usefulness of histotypic culture systems with a high developmental potential, such as aggregating brain cell cultures, and stress the importance of applying a large range of criteria for testing the developmental toxicity of potential neurotoxicants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatively simple techniques are now available which allow the preparation of large quantities of highly reproducible aggregate cultures from fetal rat brain or liver cells, and to grow them in a chemically defined medium. Since these cultures exhibit extensive histotypic cellular reorganization and maturation, they offer unique possibilities for developmental studies. Therefore, the purpose of the present study was to investigate the usefulness of these cultures in developmental toxicology. Aggregating brain cell cultures were exposed at different developmental stages to model drugs (i.e., antimitotic, neurotoxic, and teratogenic agents) and assayed for their responsiveness by measuring a set of biochemical parameters (i.e., total protein and DNA content, cell type-specific enzyme activities) which permit a monitoring of cellular growth and maturation. It was found that each test compound elicited a distinct, dose-dependent response pattern, which may ultimately serve to screen and classify toxic drugs by using mechanistic criteria. In addition, it could be shown that aggregating liver cell cultures are capable of toxic drug activation, and that they can be used in co-culture with brain cell aggregates, providing a potential model for complementary toxicological and metabolic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the expression of glial hyaluronate-binding protein (GHAP), an integral component of the extracellular matrix, in aggregating brain cell cultures of fetal rat telencephalon using immunofluorescence. GHAP immunoreactivity appeared after 1 week in culture, simultaneous with the first deposits of myelin basic protein, and showed a development-dependent increase. Comparison of glia-enriched and neuron-enriched cultures showed that only glial cells express GHAP. Three peptide growth factors, epidermal growth factor, fibroblast growth factor and platelet-derived growth factor, which are known to stimulate the differentiation of glial cells, modulated the deposit of GHAP immunoreactivity. The 3-dimensional structure of aggregate cultures promoted GHAP deposition, suggesting that cell-cell interactions are required for extracellular matrix formation. Furthermore GHAP production seemed to depend on the developmental stage of the glial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid and fatty acid composition of rat brain was studied during its development both in vivo and in an aggregating cell culture system. Although the amount of lipid present in the cultures was very low, the increase in glycolipid content corresponded closely to the period of intense myelin formation. Very long chain fatty acids (hydroxylated and unsubstituted) were present in 41-day cultures. In comparison to the in vivo situation, myelination was delayed in vitro and, after 40 days in culture, cholesterol esters were 5-fold higher than in vivo, indicating that demyelination was occurring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochratoxin A (OTA), a fungal contaminant of basic food commodities, is known to be highly cytotoxic, but the pathways underlying adverse effects at subcytotoxic concentrations remain to be elucidated. Recent reports indicate that OTA affects cell cycle regulation. Therefore, 3D brain cell cultures were used to study OTA effects on mitotically active neural stem/progenitor cells, comparing highly differentiated cultures with their immature counterparts. Changes in the rate of DNA synthesis were related to early changes in the mRNA expression of neural stem/progenitor cell markers. OTA at 10nM, a concentration below the cytotoxic level, was ineffective in immature cultures, whereas in mature cultures it significantly decreased the rate of DNA synthesis together with the mRNA expression of key transcriptional regulators such as Sox2, Mash1, Hes5, and Gli1; the cell cycle activator cyclin D2; the phenotypic markers nestin, doublecortin, and PDGFRα. These effects were largely prevented by Sonic hedgehog (Shh) peptide (500ngml(-1)) administration, indicating that OTA impaired the Shh pathway and the Sox2 regulatory transcription factor critical for stem cell self-renewal. Similar adverse effects of OTA in vivo might perturb the regulation of stem cell proliferation in the adult brain and in other organs exhibiting homeostatic and/or regenerative cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the Predict-IV FP7 project a strategy for measurement of in vitro biokinetics was developed, requiring the characterization of the cellular model used, especially regarding biotransformation, which frequently depends on cytochrome P450 (CYP) activity. The extrahepatic in situ CYP-mediated metabolism is especially relevant in target organ toxicity. In this study, the constitutive mRNA levels and protein localization of different CYP isoforms were investigated in 3D aggregating brain cell cultures. CYP1A1, CYP2B1/B2, CYP2D2/4, CYP2E1 and CYP3A were expressed; CYP1A1 and 2B1 represented almost 80% of the total mRNA content. Double-immunolabeling revealed their presence in astrocytes, in neurons, and to a minor extent in oligodendrocytes, confirming the cell-specific localization of CYPs in the brain. These results together with the recently reported formation of an amiodarone metabolite following repeated exposure suggest that this cell culture system possesses some metabolic potential, most likely contributing to its high performance in neurotoxicological studies and support the use of this model in studying brain neurotoxicity involving mechanisms of toxication/detoxication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing need to develop improved systems for predicting the safety of xenobiotics. However, to move beyond hazard identification the available concentration of the test compounds needs to be incorporated. In this study cyclosporine A (CsA) was used as a model compound to assess the kinetic profiles in two rodent brain cell cultures after single and repeated exposures. CsA induced-cyclophilin B (Cyp-B) secretion was also determined as CsA-specific pharmacodynamic endpoint. Since CsA is a potent p-glycoprotein substrate, the ability of this compound to cross the blood-brain barrier (BBB) was also investigated using an in vitro bovine model with repeated exposures up to 14days. Finally, CsA uptake mechanisms were studied using a parallel artificial membrane assay (PAMPA) in combination with a Caco-2 model. Kinetic results indicate a low intracellular CsA uptake, with no marked bioaccumulation or biotransformation. In addition, only low CsA amounts crossed the BBB. PAMPA and Caco-2 experiments revealed that CsA is mostly trapped to lipophilic compartments and exits the cell apically via active transport. Thus, although CsA is unlikely to enter the brain at cytotoxic concentrations, it may cause alterations in electrical activity and is likely to increase the CNS concentration of other compounds by occupying the BBBs extrusion capacity. Such an integrated testing system, incorporating BBB, brain culture models and kinetics could be applied for assessing neurotoxicity potential of compounds.