957 resultados para Emotional processing
Resumo:
Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference.
Resumo:
Emotional reactivity and the time taken to recover, particularly from negative, stressful, events, are inextricably linked, and both are crucial for maintaining well-being. It is unclear, however, to what extent emotional reactivity during stimulus onset predicts the time course of recovery after stimulus offset. To address this question, 25 participants viewed arousing (negative and positive) and neutral pictures from the International Affective Picture System (IAPS) followed by task-relevant face targets, which were to be gender categorized. Faces were presented early (400–1500 ms) or late (2400–3500 ms) after picture offset to capture the time course of recovery from emotional stimuli. Measures of reaction time (RT), as well as face-locked N170 and P3 components were taken as indicators of the impact of lingering emotion on attentional facilitation or interference. Electrophysiological effects revealed negative and positive images to facilitate face-target processing on the P3 component, regardless of temporal interval. At the individual level, increased reactivity to: (1) negative pictures, quantified as the IAPS picture-locked Late Positive Potential (LPP), predicted larger attentional interference on the face-locked P3 component to faces presented in the late time window after picture offset. (2) Positive pictures, denoted by the LPP, predicted larger facilitation on the face-locked P3 component to faces presented in the earlier time window after picture offset. These results suggest that subsequent processing is still impacted up to 3500 ms after the offset of negative pictures and 1500 ms after the offset of positive pictures for individuals reacting more strongly to these pictures, respectively. Such findings emphasize the importance of individual differences in reactivity when predicting the temporality of emotional recovery. The current experimental model provides a novel basis for future research aiming to identify profiles of adaptive and maladaptive recovery.
Resumo:
Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment.
Resumo:
The arousal-biased competition model predicts that arousal increases the gain on neural competition between stimuli representations. Thus, the model predicts that arousal simultaneously enhances processing of salient stimuli and impairs processing of relatively less-salient stimuli. We tested this model with a simple dot-probe task. On each trial, participants were simultaneously exposed to one face image as a salient cue stimulus and one place image as a non-salient stimulus. A border around the face cue location further increased its bottom-up saliency. Before these visual stimuli were shown, one of two tones played: one that predicted a shock (increasing arousal) or one that did not. An arousal-by-saliency interaction in category-specific brain regions (fusiform face area for salient faces and parahippocampal place area for non-salient places) indicated that brain activation associated with processing the salient stimulus was enhanced under arousal whereas activation associated with processing the non-salient stimulus was suppressed under arousal. This is the first functional magnetic resonance imaging study to demonstrate that arousal can enhance information processing for prioritized stimuli while simultaneously impairing processing of non-prioritized stimuli. Thus, it goes beyond previous research to show that arousal does not uniformly enhance perceptual processing, but instead does so selectively in ways that optimizes attention to highly salient stimuli.
Resumo:
A wealth of literature suggests that emotional faces are given special status as visual objects: Cognitive models suggest that emotional stimuli, particularly threat-relevant facial expressions such as fear and anger, are prioritized in visual processing and may be identified by a subcortical “quick and dirty” pathway in the absence of awareness (Tamietto & de Gelder, 2010). Both neuroimaging studies (Williams, Morris, McGlone, Abbott, & Mattingley, 2004) and backward masking studies (Whalen, Rauch, Etcoff, McInerney, & Lee, 1998) have supported the notion of emotion processing without awareness. Recently, our own group (Adams, Gray, Garner, & Graf, 2010) showed adaptation to emotional faces that were rendered invisible using a variant of binocular rivalry: continual flash suppression (CFS, Tsuchiya & Koch, 2005). Here we (i) respond to Yang, Hong, and Blake's (2010) criticisms of our adaptation paper and (ii) provide a unified account of adaptation to facial expression, identity, and gender, under conditions of unawareness
Resumo:
Threat-relevant stimuli such as fear faces are prioritized by the human visual system. Recent research suggests that this prioritization begins during unconscious processing: A specialized (possibly subcortical) pathway evaluates the threat relevance of visual input, resulting in preferential access to awareness for threat stimuli. Our data challenge this claim. We used a continuous flash suppression (CFS) paradigm to present emotional face stimuli outside of awareness. It has been shown using CFS that salient (e.g., high contrast) and recognizable stimuli (faces, words) become visible more quickly than less salient or less recognizable stimuli. We found that although fearful faces emerge from suppression faster than other faces, this was wholly explained by their low-level visual properties, rather than their emotional content. We conclude that, in the competition for visual awareness, the visual system prefers and promotes unconscious stimuli that are more “face-like,” but the emotional content of a face has no effect on stimulus salience.
Resumo:
An association between interpretation of ambiguity and anxiety may exist in children, but findings have been equivocal. The present research utilized the Interpretation Generation Questionnaire for Children (IGQ-C), a novel measure that breaks down the processing of ambiguity into three steps: the generation of possible interpretations, the selection of the most likely interpretation and the anticipated emotional response to the ambiguous situation. The IGQ-C was completed by 103 children aged 11–12 years, 28 of whom had a clinical anxiety disorder. There was some evidence for an association between anxiety and: (1) the generation of initial negative interpretations; (2) the generation of a greater number of negative interpretations overall; and (3) the selection of negative responses. These findings were not consistent across measures of anxiety. A more convincing association was found between child anxiety and anticipated emotional response to the ambiguous scenarios, with anxious children anticipating more negative emotion.
Resumo:
Adults diagnosed with autism spectrum disorder (ASD) show a reduced sensitivity (degree of selective response) to social stimuli such as human voices. In order to determine whether this reduced sensitivity is a consequence of years of poor social interaction and communication or is present prior to significant experience, we used functional MRI to examine cortical sensitivity to auditory stimuli in infants at high familial risk for later emerging ASD (HR group, N = 15), and compared this to infants with no family history of ASD (LR group, N = 18). The infants (aged between 4 and 7 months) were presented with voice and environmental sounds while asleep in the scanner and their behaviour was also examined in the context of observed parent-infant interaction. Whereas LR infants showed early specialisation for human voice processing in right temporal and medial frontal regions, the HR infants did not. Similarly, LR infants showed stronger sensitivity than HR infants to sad vocalisations in the right fusiform gyrus and left hippocampus. Also, in the HR group only, there was an association between each infant's degree of engagement during social interaction and the degree of voice sensitivity in key cortical regions. These results suggest that at least some infants at high-risk for ASD have atypical neural responses to human voice with and without emotional valence. Further exploration of the relationship between behaviour during social interaction and voice processing may help better understand the mechanisms that lead to different outcomes in at risk populations.
Resumo:
The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte) has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses) connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena. © MSM 2011.
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.
Resumo:
For their survival, humans and animals can rely on motivational systems which are specialized in assessing the valence and imminence of dangers and appetitive cues. The Orienting Response (OR) is a fundamental response pattern that an organism executes whenever a novel or significant stimulus is detected, and has been shown to be consistently modulated by the affective value of a stimulus. However, detecting threatening stimuli and appetitive affordances while they are far away compared to when they are within reach constitutes an obvious evolutionary advantage. Building on the linear relationship between stimulus distance and retinal size, the present research was aimed at investigating the extent to which emotional modulation of distinct processes (action preparation, attentional capture, and subjective emotional state) is affected when reducing the retinal size of a picture. Studies 1-3 examined the effects of picture size on emotional response. Subjective feeling of engagement, as well as sympathetic activation, were modulated by picture size, suggesting that action preparation and subjective experience reflect the combined effects of detecting an arousing stimulus and assessing its imminence. On the other hand, physiological responses which are thought to reflect the amount of attentional resources invested in stimulus processing did not vary with picture size. Studies 4-6 were conducted to substantiate and extend the results of studies 1-3. In particular, it was noted that a decrease in picture size is associated with a loss in the low spatial frequencies of a picture, which might confound the interpretation of the results of studies 1-3. Therefore, emotional and neutral images which were either low-pass filtered or reduced in size were presented, and affective responses were measured. Most effects which were observed when manipulating image size were replicated by blurring pictures. However, pictures depicting highly arousing unpleasant contents were associated with a more pronounced decrease in affective modulation when pictures were reduced in size compared to when they were blurred. The present results provide important information for the study of processes involved in picture perception and in the genesis and expression of an emotional response. In particular, the availability of high spatial frequencies might affect the degree of activation of an internal representation of an affectively charged scene, and might modulate subjective emotional state and preparation for action. Moreover, the manipulation of stimulus imminence revealed important effects of stimulus engagement on specific components of the emotional response, and the implications of the present data for some models of emotions have been discussed. In particular, within the framework of a staged model of emotional response, the tactic and strategic role of response preparation and attention allocation to stimuli varying in engaging power has been discussed, considering the adaptive advantages that each might represent in an evolutionary view. Finally, the identification of perceptual parameters that allow affective processing to be carried out has important methodological applications in future studies examining emotional response in basic research or clinical contexts.
Resumo:
Alexithymia refers to difficulties in recognizing one’s own emotions and others emotions. Theories of emotional embodiment suggest that, in order to understand other peoples’ feelings, observers re-experience, or simulate, the relevant component (i.e. somatic, motor, visceral) of emotion’s expressed by others in one’s self. In this way, the emotions are “embodied”. Critically, to date, there are no studies investigating the ability of alexithymic individuals in embodying the emotions conveyed by faces. In the present dissertation different implicit paradigms and techniques falling within the field of affective neuroscience have been employed in order to test a possible deficit in the embodiment of emotions in alexithymia while subjects were requested to observe faces manifesting different expression: fear, disgust, happiness and neutral. The level of the perceptual encoding of emotional faces and the embodiment of emotions in the somato-sensory and sensory-motor system have been investigated. Moreover, non-communicative motor reaction to emotional stimuli (i.e. visceral reactions) and interoceptive abilities of alexithymic subjects have been explored. The present dissertation provided convergent evidences in support of a deficit in the processing of fearful expression in subjects with high alexithymic personality traits. Indeed, the pattern of fear induced changes in the perceptual encoding, in the somato-sensory and in the somato-motor system (both the communicative and non communicative one) is widely and consistently altered in alexithymia. This support the hypothesis of a diminished responses to fearful stimuli in alexithymia. In addition, the overall results on happiness and disgust, although preliminary, provided interesting results. Indeed, the results on happiness revealed a defective perceptual encoding, coupled with a slight difficulty (i.e. delayed responses) at the level of the communicative somato-motor system, and the emotion of disgust has been found to be abnormally embodied at the level of the somato-sensory system.