836 resultados para Emerging contaminants
Resumo:
Application of Western management theories in different contexts has been questioned for several decades. However, there is still no well-defined theoretical framework for understanding management systems in non-industrialized countries. This article provides some guidelines to develop these frameworks by elaborating some of the major characteristics of strategies, structures, decision-makings and management systems in Developing Countries (DC). The analysis showed evidence that the complexity of national environmental forces of DCs has made the application of Western management theories more problematic in these countries. The article concludes that global business firms should realize that it is time to stop transferring these management systems to DCs and trying to adapt their organizations to these systems and that a clinical type of approach may be more effective.
Resumo:
A descriptive study was developed in order to assess air contamination caused by fungi and particles in seven poultry units. Twenty seven air samples of 25 litters were collected through impaction method. Air sampling and particle concentration measurement were performed in the pavilions’ interior and also outside premises, since this was the place regarded as reference. Simultaneously, temperature and relative humidity were also registered. Regarding fungal load in the air from the seven poultry farms, the highest value obtained was 24040 CFU/m3 and the lowest was 320 CFU/m3. Twenty eight species/genera of fungi were identified, being Scopulariopsis brevicaulis (39.0%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. From the Aspergillus genus, Aspergillus flavus (74.5%) was the most frequently detected species. There was a significant correlation (r=0.487; p=0.014) between temperature and the level of fungal contamination (CFU/m3). Considering contamination caused by particles, in this study, particles with larger dimensions (PM5.0 and PM10) have higher concentrations. There was also a significant correlation between relative humidity and concentration of smaller particles namely, PM0.5 (r=0.438; p=0.025) and PM1.0 (r=0.537; p=0.005). Characterizing typical exposure levels to these contaminants in this specific occupational setting is required to allow a more detailed risk assessment analysis and to set exposure limits to protect workers’ health.
Resumo:
In the 21st century the majority of people live in urban settings and studies show a trend to the increase of this phenomenon. Globalisation and the concentration of multinational and clusters of firms in certain places are attracting people who seek employment and a better living. Many of those agglomerations are situated in developing countries, representing serious challenges both for public and private sectors. Programmes and initiatives in different countries are taking place and best practices are being exchanged globally. The objective is to transform these urban places into sustainable learning cities/regions where citizens can live with quality. The complexity of urban places, sometimes megacities, opened a new field of research. This paper argues that in order to understand the dynamics of such a complex phenomenon, a multidisciplinary, systemic approach is needed and the creation of learning cities and regions calls for the contribution of a multitude of fields of knowledge, ranging from economy to urbanism, educational science, sociology, environmental psychology and others.
Resumo:
In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results.
Resumo:
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.
Resumo:
The efficacy, cellular uptake and specific transport of dietary antioxidants to target organs, tissues and cells remains the most important setback for their application in the treatment of oxidative-stress related disorders and in particular in neurodegenerative diseases, as brain targeting remains a still unsolved challenge. Nanotechnology based delivery systems can be a solution for the above mentioned problems, specifically in the case of targeting dietary antioxidants with neuroprotective activity. Nanotechnology-based delivery systems can protect antioxidants from degradation, improve their physicochemical drug-like properties and in turn their bioavailability. The impact of nanomedicine in the improvement of the performance of dietary antioxidants, as protective agents in oxidative- stress events, specifically through the use of drug delivery systems, is highlighted in this review as well as the type of nanomaterials regularly used for drug delivery purposes. From the data one can conclude that the research combining (dietary) antioxidants and nanotechnology, namely as a therapeutic solution for neurodegenerative diseases, is still in a very early stage. So, a huge research area remains to be explored that hopefully will yield new and effective neuroprotective therapeutic agents in a foreseeable future.
Resumo:
Ecological Water Quality - Water Treatment and Reuse
Resumo:
Melioidosis is an emerging infection in Brazil and neighbouring South American countries. The wide range of clinical presentations include severe community-acquired pneumonia, septicaemia, central nervous system infection and less severe soft tissue infection. Diagnosis depends heavily on the clinical microbiology laboratory for culture. Burkholderia pseudomallei, the bacterial cause of melioidosis, is easily cultured from blood, sputum and other clinical samples. However, B. pseudomallei can be difficult to identify reliably, and can be confused with closely related bacteria, some of which may be dismissed as insignificant culture contaminants. Serological tests can help to support a diagnosis of melioidosis, but by themselves do not provide a definitive diagnosis. The use of a laboratory discovery pathway can help reduce the risk of missing atypical B. pseudomallei isolates. Recommended antibiotic treatment for severe infection is either intravenous Ceftazidime or Meropenem for several weeks, followed by up to 20 weeks oral treatment with a combination of trimethoprim-sulphamethoxazole and doxycycline. Consistent use of diagnostic microbiology to confirm the diagnosis, and rigorous treatment of severe infection with the correct antibiotics in two stages; acute and eradication, will contribute to a reduction in mortality from melioidosis.
Resumo:
New arguments proving that successive (repeated) measurements have a memory and actually remember each other are presented. The recognition of this peculiarity can change essentially the existing paradigm associated with conventional observation in behavior of different complex systems and lead towards the application of an intermediate model (IM). This IM can provide a very accurate fit of the measured data in terms of the Prony's decomposition. This decomposition, in turn, contains a small set of the fitting parameters relatively to the number of initial data points and allows comparing the measured data in cases where the “best fit” model based on some specific physical principles is absent. As an example, we consider two X-ray diffractometers (defined in paper as A- (“cheap”) and B- (“expensive”) that are used after their proper calibration for the measuring of the same substance (corundum a-Al2O3). The amplitude-frequency response (AFR) obtained in the frame of the Prony's decomposition can be used for comparison of the spectra recorded from (A) and (B) - X-ray diffractometers (XRDs) for calibration and other practical purposes. We prove also that the Fourier decomposition can be adapted to “ideal” experiment without memory while the Prony's decomposition corresponds to real measurement and can be fitted in the frame of the IM in this case. New statistical parameters describing the properties of experimental equipment (irrespective to their internal “filling”) are found. The suggested approach is rather general and can be used for calibration and comparison of different complex dynamical systems in practical purposes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente