716 resultados para Eletrodos modificados


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A adesão longitudinal continua a representar um dos maiores desafios da Odontologia moderna. Uma nova proposta para o estabelecimento do equilíbrio da adesão aos tecidos dentários surge, baseada na observação dos resultados obtidos com a tecnologia Grander para revitalização da água. Objetiva-se com o estudo verificar a influência dessa tecnologia nas propriedades físicas de dois sistemas adesivos (convencional e autocondicionante) à partir da medição da tensão superficial e do ângulo de contato; e avaliar a formação e a qualidade da camada híbrida em dentina humana e bovina. A tensão superficial de quatro diferentes líquidos (água, Single Bond- 3M, Primer do Clearfil SE Bond -Kuraray, e Bond do Clearfil SE-Kuraray), foi medida antes e após a modificação pelo procedimento Grander em aparelho goniômetro (Ramé-hart). O ângulo de contato com três substratos distintos (placa de titânio, dentina humana e dentina bovina), foi medido para os quatro líquidos também antes e após a modificação pelo procedimento Grander, também em goniômetro. A formação e qualidade da camada híbrida, foi avaliada em MEV, a partir da confecção de corpos de prova dos substratos humano e bovino, devidamente embutidos, preparados em lixas de variada granulação até a exposição de dentina, submetidos ao procedimento adesivo (SB ou CSEB) normal ou grander modificado, recebendo ao final dupla camada de resina composta Z250-3M, fotopolimerizada por 40s. Após armazenamento em estufa bacteriológica por 24h, os procedimentos para análise ao MEV foram realizados (fixação, desidratação, secagem e metalização). A estatística de Análise de Variância ANOVA e Teste de Tukey 5% revelou que: houve redução estatisticamente significante da tensão superficial para todos os líquidos Grander modificados; houve redução estatisticamente... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Há uma grande expectativa para o desenvolvimento de biossensores miniaturizados, que permitam análises mais eficientes e rápidas, em matrizes complexas como as encontradas: no ar, alimentos, águas residuais e em medicamentos. Recentemente, filmes poliméricos inteligentes ativados por estímulo externo têm atraído bastante interesse no desenvolvimento desses tais nanosensores para uso em sistemas químicos e bioquímicos. Estes materiais apresentam uma alta sensibilidade a alterações físicas ou químicas ocorridas na sua interface, e respondem seletivamente a essas mudanças para se adaptarem ao meio. Juntando-se as propriedades estímulo-responsivas desses polímeros com a alta seletividade de reações biológicas tem-se uma excelente combinação para a criação de nano biossensores. A esse tipo de sistema: interfaces/material biológico adota-se a nomenclatura biointerface. As biointerfaces são biossensores em potencial, e na preparação dos biossensores a tarefa mais complicada na sua preparação é o desenvolvimento de superfícies adequadas para o interfaceamento com material biológico, de maneira que a parte biológica possa atuar de forma sensível e estável. A primeira etapa consistiu na produção e caracterização dos polímeros escova (P2VP), os quais serão preparados pelo processo de deposição térmica. A caracterização dos mesmos foi realizada por imagens microscopia de força atômica (AFM), via eletroquímica e por transmissão de ressonância plasmônica de superfície. Na etapa posterior foi estudada a imobilização da glicose oxidase para a preparação do biossensor. O dispositivo fabricado foi empregado para a determinação direta de glicose. Desta forma, esperou-se obter uma metodologia de menor custo e tempo de análise. Logo, este estudo irá contribuir de forma significativa sobre os processos de montagem de biossensores a partir de compostos nanoestruturados. Foram utilizadas técnicas de ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The food industry looks for new ways and strategies to standardize the marketing products in the customer market. The modification of the cornflour that are produced in the manufacturing of the cheese bread has been one of the these ways, since some raw materials that are used to make the cornflour present different features in each supplyed allotment. The present research had as a main purpose to analyse such features looking forward to improving the quality of the final product. Thus, some tests were done to verify the pH, humidity and acidity; it was checked the percentage of carbonyl and carboxylic groups and the power of expansion to five different allotments and to farina, for example: pre-gel, natural, expandex farina as the combination of the three cited kinds. After diversifying the allotments, different results were acquired, even to an unique kind of farina and it was not possible to correlate the results of acidity, the percentage of carbonyl and carboxylic groups and the power of expansion. The pH and humidity are proper for each kind of farina. This way, the raw materials that are used for each cheese bread manufacturing must be analysed in each allotment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technology always advances and thus the device miniaturization and improved performance, besides multifunctionality, they become extremely necessary. A wave of research on the area tends to grow in number and importance in today's market, it is necessary to search for new materials, new applicability of the existing ones and new processes for increasingly cheaper costs. Dielectric materials are considered a key element in this sector being the main electrical properties its high dielectric constant and low dielectric loss. The Polymeric Precursor Method appears as a good alternative because is a low cost, simple process with controlled stoichiometry. In this method, two steps were performed. In a first step, the precursor solution was decomposed into powders and in a second step the precursor solution was converted in thin films. In this work, was used the polymeric precursor methods to get thin films where they were heat treated and characterized by XRD, SEM and AFM. We have obtained Bi3NbO7 thin films with good homogeneity and uniform distribution of grains were noted. We observed that the best condition to obtain the tetragonal phase is annealing the film at high temperatures for a longer soaking time and with excess of bismuth. Several oxides electrodes were evaluated aiming to obtain textured dielectric thin films

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium has proven its suitability as an implant material in surgery over many years. Excellent biocompatibility and corrosion resistance are outstanding features. Implant surfaces always causes concern and interest in scientific communities, due to its close relationship with the time required for osseointegration. Surface modification can be performed by several methods, being laser irradiation one of them. Titanium implants with two different surfaces were inserted in rabbits: Group I (G-I: machined surface, control group), and group II (G-II: laser irradiated, test group) being processed 30 and 60 days after surgery for histological analysis. Surface characterization was performed with SEM-EDS, contact angle measurement, and mean roughness (Ra) parameters. Surface analysis in the GII group showed a nanomorphology affected by melt and quick solidification zones following laser irradiation (SEM), as well as total wettability and Ra mean values significantly higher than in the G-I group. The laser treatment resulted in a homogenized, porous surface, with increased surface area and volume. Histological analysis of bone-implant contact linear extension (BIC) showed better results in G-II at 30 days (39.26 ± 18.23 and 68.41 ± 13.68 for G-I and G-II groups, respectively). Titanium implants modified by laser irradiation showed important features that may accelerate early osseointegration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, RVC samples were treated by plasma immersion ion implantation (PIII) for electrodes production. High-voltage pulses with amplitudes of -3.0 kV or -10.0 kV were applied to the RVC samples while the treatment time was 10, 20 and 30 minutes. Nitrogen, atmospheric air and H2:N2 mixture were employed as plasma sources. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The SEM images present an apparent enhancement of the surface roughness after the treatment probably due to the surface sputtering during the PIII process. This observation is in agreement with the specific electrochemical surface area (SESA) of RVC electrodes. An increase was observed of the SESA values for the PIII treated samples compared to the untreated specimen. Some oxygen and nitrogen containing groups were introduced on the RVC surface after the PIII treatment. Both plasma-induced process: the surface roughening and the introduction of the polar species on the RVC surface are beneficial for the RVC electrodes application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once petroleum is na exhaustible source of energy, alternative fuels are having more prominence. A much discussed option for replacing fossil fuels is the use of biofuels derived from oils or fats, especially biodiesel. The biodiesel preparation is through a reaction named transesterification, a reaction of triglycerides with a short chain alcohol with a catalyst, producing a mixture of fatty acid esters and glycerol. According to ANP (National Petroleum Agency) specifications, biodiesel can have contaminants due to the catalyst or oil used on its synthesis, such as phosphorus, wich can damage the catalytic converter and cause significant increase in the particles emission. This project aims to develop na alternative method using chemically modified electrodes with iron nanoparticles for determination of phosphorus in biodiesel. For the formation of the iron nanoparticles film on the surface of a glassy carbon electrode, was used a iron sulfate solution. The film was formed after 10 successive cycles, with a scanning speed of 50 mV s-1 and a potential range of -0,9 to -1,25 V. To reduce possible oxides on the surface and activate the electrode, it has been subjected to a cathodic polarization with a potential of -1,25 V for 15 minutes in a sodium hydroxide solution. In cyclic voltammograms obtained in the study of the speed of scanning, there is an increase in the intensity of the anodic and cathodic current peaks. The cathodic peak current varied linearly with the square root of scan rate, showing that the electrode is controlled by diffusion. After successive additions of phosphate there is a linear variation in the current peak in the concentration range of 1,0 x 10-7 a 1,0 x 10-6 mol L-1. To determine if the concentration of phosphorus in real sample, the method of adding standard was used by adding aliquots of phosphate ions in the solution containing soy biodiesel extracted with ....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the sol-gel process, organic-inorganic hybrid coatings were synthesized by incorporation of different concentrations of functionalized carbon nanotubes, to improve their mechanical strength and thermal resistance without changing its passivation character. The siloxane-PMMA hybrids were prepared by radical polymerization of methyl methacrylate (MMA) with 3-methacryloxipropiltrimethoxisilane (MPTS) using the thermal initiator benzoyl peroxide (BPO), followed by acid catalyzed hydrolysis and condensation of tetraethoxysilane (TEOS). The analysis of pristine and functionalized carbon nanotubes was carried out using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. Structural analysis of hybrids was performed by Nuclear Magnetic Resonance, Atomic Force Microscopy and Raman Spectroscopy. For analysis of mechanical strength and thermal stability were performed mechanical compression tests and thermogravimetric analysis, respectively. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion resistance in saline environment. The results showed an effective functionalization of carbon nanotubes with carboxyl groups and conservation of its structure. The hybrids showed high siloxane network connectivity and roughness of approximately 0.3 nm. The incorporation of carbon nanotubes in the hybrid matrix did not change significantly their thermal stability. Samples containing carbon nanotubes exhibit good corrosion resistance (on the order of MΩ in saline environment), but the lack of complete dispersion of carbon nanotubes in the hybrid, resulted in a loss of mechanical and corrosion resistance compared to hybrid matrix.