944 resultados para Elementary students
Resumo:
The purpose of this study was to investigate the common factors and experiences that contribute to the success of high ability Black students enrolled in Frank C. Martin Elementary School, the first school in Florida authorized to offer the International Baccalaureate (IB) Primary Years Programme (PYP). The study further sought to determine ways in which educators and stakeholders assisted in maintaining and in increasing Black students' achievement that motivated and encouraged them to pursue similar programs at the middle and high school levels. ^ Three sources of data were used: (a) individual interviews with fourth and fifth grade high ability Black students using a semi-structured format elicited discussion of their perceptions of the PYP and factors contributing to their success; (b) individual interviews with their fourth and fifth grade teachers elicited discussion of teacher expectations and effective instructional strategies; and (c) a questionnaire asked parents of the participating students their reasons for choosing the PYP, their perceptions of the program, and their own level of involvement in their child's learning. Three separate focus groups gathered further data. ^ The results revealed that the factors contributing to the success of high ability Black elementary school students are consistent with those of students in other racial groups. These are a challenging program, high teacher and parental expectations, strong parental involvement and support, a celebration of culture and diversity in a caring and nurturing environment, and the development and internalization of positive attitudes. ^ Implications for future studies might include a longitudinal study conducted over seven years to trace the achievements of Black students throughout the entire IB Program. ^
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Tesis (Licenciado en Lenguas Castellana, Inglés y Francés).--Universidad de La Salle. Facultad de Ciencias de La Educación. Licenciatura en Lengua Castellana, Inglés y Francés, 2014
Resumo:
The relationships between teacher praise and feedback, and students’ perceptions of the classroom environment were investigated in six rural elementary schools (n 5 747). The Teacher Feedback Scale and My Classroom Scale were developed as part of this study and used to collect the data. Structural equation modelling was used to test a hypothesised model. The results indicated that negative teacher feedback and effort feedback were both related to students’ relationships with their teachers, while ability feedback was associated with perceptions of the classroom environment. Praise was not related to classroom environment or teacher–student relationships. Significant age and gender differences were found. Additionally, differences were found between students who were satisfied with their classroom and those who were dissatisfied. Satisfied students received more general praise, general ability feedback, effort feedback and less negative teacher feedback when compared to dissatisfied students. Research studies have emphasised the influence of signicicant adults (teachers and parents) on students’ personal development (Porlier et al., 1999) and the importance of significant others’ verbal statements when directed at children (Burnett, 1996a). The relationships between negative and positive statements made by teachers, parents, peers and siblings and children’s self-talk have been investigated (Burnett, 1996a) and positive statements (praise) have been found to be more beneficial than verbal criticism (Burnett, 1999). The quality of life in the classroom in recent times has been considered of great importance to students (Thorp et al., 1994) and this is recognised by Baker (1999) who reported a relationship between students’ satisfaction with the learning environment, and differential teacher feedback and praise. This study investigated the relationships between teacher praise and feedback, and how students perceived their classroom and their relationship with their teacher.
Resumo:
This paper reviews the means by which teacher quality has been measured. It considers data sources such as students, peers, experts, and examines the psychometrics and scaleproperties of teacher quality assessment instruments with respect to reliability and validity. A list of items for possible inclusion in an elementary student focussed instrument is considered, together with the potential use of such an instrument in measuring teacher quality.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
Having flexible notions of the unit (e.g., 26 ones can be thought of as 2.6 tens, 1 ten 16 ones, 260 tenths, etc.) should be a major focus of elementary mathematics education. However, often these powerful notions are relegated to computations where the major emphasis is on "getting the right answer" thus procedural knowledge rather than conceptual knowledge becomes the primary focus. This paper reports on 22 high-performing students' reunitising processes ascertained from individual interviews on tasks requiring unitising, reunitising and regrouping; errors were categorised to depict particular thinking strategies. The results show that, even for high-performing students, regrouping is a cognitively complex task. This paper analyses this complexity and draws inferences for teaching.
Resumo:
Generalising arithmetic structures is seen as a key to developing algebraic understanding. Many adolescent students begin secondary school with a poor understanding of the structure of arithmetic. This paper presents a theory for a teaching/learning trajectory designed to build mathematical understanding and abstraction in the elementary school context. The particular focus is on the use of models and representations to construct an understanding of equivalence. The results of a longitudinal intervention study with five elementary schools, following 220 students as they progressed from Year 2 to Year 6, informed the development of this theory. Data were gathered from multiple sources including interviews, videos of classroom teaching, and pre-and post-tests. Data reduction resulted in the development of nine conjectures representing a growth in integration of models and representations. These conjectures formed the basis of the theory.
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
Thirty-four elementary school teachers and 32 education students from Canada rated their reactions towards vignettes describing children who met attention-deficit/hyperactivity disorder (ADHD) symptom criteria that included or did not include the label “ADHD.” “ADHD”-labeled vignettes elicited greater perceptions of the child's impairment as well as more negative emotions and less confidence in the participants, although it also increased participants' willingness to implement treatment interventions. Ratings were similar to vignettes of boys versus girls; however, important differences in ratings between teachers and education students emerged and are discussed. Finally, we investigated the degree to which teachers' professional backgrounds influenced bias based on the label “ADHD.” Training specific to ADHD consistently predicted label bias, whereas teachers' experience working with children with ADHD did not.
Resumo:
The advocacy for inquiry-based learning in contemporary curricula assumes the principle that students learn in their own way by drawing on direct experience fostered by the teacher. That students should be able to discover answers themselves through active engagement with new experiences was central to the thinking of eminent educators such as Pestalozzi, Dewey and Montessori. However, even after many years of research and practice, inquiry learning as a referent for teaching still struggles to find expression in the average teachers' pedagogy. This study drew on interview data from 20 elementary teachers. A phenomenographic analysis revealed three conceptions of teaching for inquiry learning in science in the elementary years of schooling: (a) The Experience- centred conception where teachers focused on providing interesting sensory experiences to students; (b) The Problem-centred conception where teachers focused on challenging students with engaging problems; and (c) The Question-centred conception where teachers focused on helping students to ask and answer their own questions. Understanding teachers' conceptions has implications for both the enactment of inquiry teaching in the classroom as well as the uptake of new teaching behaviours during professional development, with enhanced outcomes for engaging students in Science.