989 resultados para Elementary particle physics
Resumo:
A χ2 analysis is performed to test the resolving power of two-dimensional pion interferometry using for illustration the preliminary E802 data on Si+Au at 14.6 A GeV/c. We find that the resolving power to distinguish two decoupling geometries of different dynamical models is enhanced by studying the variation of the mean χ2 per degrees of freedom with respect to the range of the analysis in the qT, qL plane. The preliminary data seem to rule out dynamical models with significant ω, η resonance formation yields.
Resumo:
We estimate the cross-section for glueball production in peripheral heavy-ion collisions through two-photon and double-Pomeron exchange, at energies that will be available at RHIC and LHC. Glueballs will be produced at large rates, opening the possibility to study decays with very small branching ratios. In particular, we discuss the possibility of observing the subprocess γγ(PP) → G → γγ.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.
Resumo:
We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter, with the vanishing of vector meson-meson and meson-photon mixing self-energies at q2 = 0. This vanishing of vector mixing has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on such models, we here apply them to a study of photon-meson mixing and VMD. As an example we compare the predicted momentum dependence of one such model with a momentum-dependent version of VMD discussed by Sakurai in the 1960's. We find that it produces a result which is consistent with the traditional VMD phenomenology. We conclude that comparison with VMD phenomenology can provide a useful constraint on such models.
Resumo:
We show that the emission of a Minkowski particle by a general class of scalar sources as described by inertial observers corresponds to either the emission or the absorption of a Rindler particle as described by uniformly accelerated observers. Our results are discussed in connection with the current controversy whether uniformly accelerated detectors radiate.
Resumo:
In analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.
Resumo:
Systems containing simultaneously hadrons and their constituents are most easily described by treating composite hadron field operators on the same kinematical footing as the constituent ones. Introduction of a unitary transformation allows redescription of hadrons by elementary-particle field operators. Transformation of the microscopic Hamiltonian leads to effective Hamiltonians describing all possible processes involving hadrons and their constituents.
Resumo:
The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.
Resumo:
We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.
Resumo:
Superstring field theory was recently used to derive a covariant action for a self-dual five-form field strength. This action is shown to be a ten-dimensional version of the McClain-Wu-Yu action. By coupling to D-branes, it can be generalized in the presence of sources. In four dimensions, this gives a local Maxwell action with electric and magnetic sources.
Resumo:
Superstring field theory was recently used to derive a four-dimensional Maxwell action with manifest duality. This action is related to the McClain-Wu-Yu Hamiltonian and can be locally coupled to electric and magnetic sources. In this letter, the manifestly dual Maxwell action is supersymmetrized using N = 1 and N = 2 superspace. The N = 2 version may be useful for studying Seiberg-Witten duality. © 1997 Elsevier Science B.V.
Resumo:
Investigation of invariant cross-sections for production of K*- and K*0, in the fragmentation region of the proton, in p - p and γ - p reactions, gives a direct and unambiguous probe to the symmetry breaking of the nucleon sea. Based on existing data, we clearly found a large asymmetry of the sea. Our result is in excellent agreement with NA51 measurement, signaling lack of any nuclear effect. The measurement can be carried out in a single experimental set up. The ratio K*-/K*0 is equivalent to ū/d̄, with easy access to the x-dependence of the asymmetry. The observed asymmetry from available experimental data is used to improve the valon-recombination model. © 1997 Elsevier Science B.V.
Resumo:
Nonperturbative infrared finite solutions for the gluon polarization tensor have been found, and the possibility that gluons may have a dynamically generated mass is supported by recent Monte Carlo simulation on the lattice. These solutions differ among themselves, due to different approximations performed when solving the Schwinger-Dyson equations for the gluon polarization tensor. Only approximations that minimize energy are meaningful, and, according to this, we compute an effective potential for composite operators as a function of these solutions in order to distinguish which one is selected by the vacuum. © 1997 Elsevier Science B.V.
Resumo:
A contact four-fermion interaction between light quarks and electrons has been evoked as a possible explanation for the excess of events observed by HERA at high-Q2. We explore the 1-loop effects of such interaction in Γ(Z0 → e+e-) measured at LEP and impose strong bounds on the lower limit of the effective scale. Our results are able to discard some of the contact interactions as possible explanation for the HERA events. © 1997 Elsevier Science B.V.
Resumo:
Using the manifestly spacetime supersymmetric description of the four-dimensional open superstring, we construct the vertex operator in superspace for the first massive state. This construction provides an N = 1 D = 4 superspace representation of the massive spin-2 multiplet. © 1997 Published by Elsevier Science B.V.