990 resultados para Electrostatic Interactions
Resumo:
Polyampholyte copolymers containing both positive and negative monomers regularly dispersed along the chain were studied. The Monte Carlo method was used to simulate chains with charged monomers interacting by screened Coulomb potential. The neutral polyampholyte chains collapse due to the attractive electrostatic interactions. The nonneutral chains are in extended conformations due to the repulsive polyelectrolyte effects that dominate the attractive polyampholyte interactions. The results are in good agreement with experiment.
Resumo:
This paper surveys the topology of macroporous silica prepared using latex templates covering the submicrometric range (0.1-0.7 mu m). The behavior of latex spheres in aqueous dispersion has been analyzed by dynamic light scattering (DLS) measurement indicating the most appropriate conditions to form well-defined cubic arrays. The optical behavior of latex spheres has been analyzed by transmittance and reflectance measurements in order to determine their diameter and filling factor when they were assembled in bidimensional arrays. Macroscopic templates have been obtained by a centrifugation process and their crystalline ordering has been confirmed by porosimetry and scanning electron microscopy. These self-assembled structures have been used to produce macroporous silica, whose final topology depends on the pore size distribution of the original template. It has been seen that latex spheres are ordered in a predominant fcc arrangement with slipping of tetragonal pores due to the action of attractive electrostatic interactions. The main effect is to change the spherical shape of voids in macroporous silica into a hexagonal configuration with possible applications to fabricate photonic devices with novel optical properties. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The conformational transition from coil to extended coil for polygalacturonic acid has been studied by conductometric titrations and Monte Carlo simulations. The results of conductometric titrations at different polymer concentrations have been analyzed using the model proposed by Manning,1 which describes the conductivity of polyelectrolitic solutions. This experimental approach provides the transport factor and the average distance between charged groups at different degrees of ionization (α). The mean distances between charged groups have been compared with the values obtained by Monte Carlo simulations. In these simulations the polymer chain is modeled as a self-avoiding random walk in a cubic lattice. The monomers interact through the unscreened Coulombic potential. The ratio between the end-to-end distance and the number of ionized beads provides the average distance between charged monomers. The experimental and theoretical values are in good agreement for the whole range of ionization degrees accessed by conductometric titrations. These results suggest that the electrostatic interactions seem to be the major contribution for the coil to extended coil conformational change. The small deviations for α ≤ 0.5 suggests that the stiffness of the chain, associated with local interactions, becomes increasingly significant as the fraction of charged groups is decreased. © 2000 American Chemical Society.
Resumo:
Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein-protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer. © 2012 Springer-Verlag.
Resumo:
This investigation has demonstrated the need for thermal treatment of seawater neutralised red mud (SWRM) in order to obtain reasonable adsorption of Reactive Blue dye 19 (RB 19). Thermal treatment results in a greater surface area, which results in an increased adsorption capacity due to more available adsorption sites. Adsorption of RB 19 has been found to be best achieved in acidic conditions using SWNRM400 (heated to 400 °C) with an adsorption capacity of 416.7. mg/g compared to 250.0. mg/g for untreated SWNRM. Kinetic studies indicate a pseudosecond-order reaction mechanism is responsible for the adsorption of RB 19 using SWNRM, which indicates adsorption occurs by electrostatic interactions. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)