954 resultados para Electronegative LDL
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Angiopoietin-2 confers Atheroprotection in apoE-/- mice by inhibiting LDL oxidation via nitric oxide
Resumo:
Atherosclerosis is promoted by a combination of hypercholesterolemia and vascular inflammation. The function of Angiopoietin (Ang)-2, a key regulator of angiogenesis, in the maintenance of large vessels is unknown. A single systemic administration of Ang-2 adenovirus (AdAng-2) to apoE-/- mice fed a Western diet significantly reduced atherosclerotic lesion size 8 40%) and oxidized LDL and macrophage content of the plaques. These beneficial effects were abolished by the inhibition of nitric oxide synthase (NOS). In endothelial cells, endothelial NOS activation per se inhibited LDL oxidation and Ang-2 stimulated NO release in a Tie2-dependent manner to decrease LDL oxidation. These findings demonstrate a novel atheroprotective role for Ang-2 when endothelial cell function is compromised and suggest that growth factors, which stimulate NO release without inducing inflammation, could offer atheroprotection.
Resumo:
Elevated LDL concentration in mid-life increases the risk of developing Alzheimer's disease (AD) in later life. Increased oxidative modification (oxLDL) and nitration is observed during dementia and hypercholesterolemia. We investigated the hypothesis that statin intervention in mid-life mitigates the inflammatory effects of oxLDL on the microvasculature. Human microvascular endothelial cells (HMVEC) were maintained on transwells to mimic the microvasculature and exposed to patient and control LDL. Blood was obtained from statin-naïve, normo- and hyperlipidaemic subjects, AD with vascular dementia (AD-plus) and AD subjects (n=10/group) at baseline. Only hyperlipidaemic subjects with normal cognitive function received 40mg simvastatin intervention/day for three months. Blood was re-analysed from normo- and hyper-lipidaemic subjects after three months. LDL isolated from statin-naïve hyperlipidaemic, AD and AD-plus subjects was more oxidised (agarose gel electrophoretic mobility, protein carbonyl content and 8-isoprostane F2α) compared to control subjects. Statin intervention decreased protein carbonyls (2.5±0.4 Vs 3.95±0.2nmol/mg; P<0.001) and 8-isoprostane F2α (30.4±4.0 pg/ml Vs 43.5±8.42 pg/ml; P<0.05). HMVEC treatment with LDL-lipids from hyperlipidaemic, AD and AD-plus subjects impaired endothelial tight junction expression and decreased total glutathione levels (AD; 18.61±1.3, AD-plus; 16.5±0.7nmol/mg protein) compared to untreated cells (23.8±1.2 vs nmol/mg protein). Basolateral IL-6 secretion was increased by LDL-lipids from hyperlipidaemic (78.4±1.9 pg/ml), AD (63.2±5.9 pg/ml) and AD-plus (80.8±0.9 pg/ml) groups compared to healthy subject lipids (18.6±3.6 pg/ml). LDL-Lipids isolated after statin intervention did not affect endothelial function. In summary, LDL-lipids from hypercholesterolaemic, AD and AD-plus patients are inflammatory to HMVEC. In vivo intervention with statins reduces the damaging effects of LDL-lipids on HMVEC.
Resumo:
Elevated cholesterol in mid-life has been associated with increased risk of dementia in later life. We have previously shown that low density lipoprotein (LDL) is more oxidised in the plasma of dementia patients although total cholesterol levels remained unchanged. Increased systemic oxidative modification (oxLDL) and nitration is also observed during hypercholesterolemia. We have investigated the hypothesis that disruption of blood brain barrier (BBB) function by oxLDL and their lipids may increase risk of neurodegeneration in later life and that statin intervention can mitigate the effects of hyperlipidaemia in mid-life. LDL isolated from statin-naïve hypercholesterolaemic subjects had higher mobility by agarose gel electrophoresis (Rf;0.53±0.06) and 8-isoprostane F2α concentration (43.5±8.42pg/ml) compared to control subjects (Rf; 0.46±0.05 and 24.2±5.37pg/ml respectively; p<0.05). Compared to HMVEC treatment with the LDL-lipids (5μM) from normolipidaemic subjects, LDL-lipids from hypercholesterolaemic subjects increased barrier permeability (103.4±12.5 Ωcm2 v 66.7±7.3 Ωcm2,P<0.01) and decreased cellular glutathione levels (18.5nmol/mg v 12.3nmol/mg) compared to untreated cells (26.2±3.6nmol/mg). LDL-lipids isolated from normolipidaemic subjects shows reduced risk to damage a BBB model compared with LDL-lipids from hypercholesterolaemic subjects. Moreover, a three month statin-intervention reduced the propensity for LDL-lipids from subjects with hyperlipidaemia to damage HMVEC. Post-statin treatment the cytotoxic and pro-inflammatory effects of LDL lipids disappeared. These data support the hypothesis that in vivo intervention with statins modifies LDL lipid oxidation, exerting a protective effect against in microvascular damage independent of cholesterol concentration.
Resumo:
Elevated cholesterol in mid-life has been associated with increased risk of dementia in later life. We have previously shown that low density lipoprotein (LDL) is more oxidised in the plasma of dementia patients although total cholesterol levels remained unchanged [1]. We have investigated the hypothesis that amyloid beta production and neurodegeneration can be driven by oxidised lipids derived from LDL following the loss of blood brain barrier integrity with ageing. Therefore, we have investigated amyloid beta formation in SHSY5Y cells treated with LDL, minimally modified (ox) LDL, and lipids extracted from both forms of LDL. LDL-treated SHSY-5Y cell viability was not significantly decreased with up to 8 μg LDL/2 × 104 cells compared to untreated cells. However, 8 μg oxLDL protein/2 × 104 cells decreased the cell viability significantly by 33.7% (P < 0.05). A more significant decrease in cell viability was observed when treating cells with extracted lipids from 8 μg of LDL (by 32.7%; P < 0.01) and oxLDL (by 41%; P < 0.01). In parallel, the ratio of reduced to oxidised GSH was decreased; GSH concentrations were significantly decreased following treatment with 0.8 μg/ml oxLD-L (7.35 ± 0.58;P < 0.01), 1.6 μg/ml (5.27 ± 0.23; P < 0.001) and 4 μg/ml (5.31 ± 0.31; P < 0.001). This decrease in redox potential was associated with an increase acid sphingomyelinase activity and lipid raft formation which could be inhibited by desipramine; SHSY5Y cells treated with oxLDL, and lipids from LDL and oxLDL for 16 h showed significantly increased acid sphingomyelinase activity (5.32 ± 0.35; P < 0.05, 5.21 ± 0.6; P < 0.05, and 5.58 ± 0.44; P < 0.01, respectively) compared to control cells (2.96 ± 0.34). As amyloid beta production is driven by the activity of beta secretase and its association with lipid rafts, we investigated whether lipids from ox-LDL can influence amyloid beta by SHSY-5Y cells in the presence of oxLDL. Using ELISA and Western blot, we confirmed that secretion of amyloid beta oligomers is increased by SHSY-5Y cells in the presence of oxLDL lipids. These data suggest a mechanism whereby LDL, and more significantly oxLDL lipids, can drive amyloid beta production and cytotoxicity in neuronal cells. [1] Li L, Willets RS, Polidori MC, Stahl W, Nelles G, Sies H, Griffiths HR. Oxidative LDL modification is increased in vascular dementia and is inversely associated with cognitive performance. Free Radic Res. 2010 Mar; 44(3): 241–8.
Resumo:
Low density lipoprotein levels (LDL) are consistently elevated in cardiovascular disease. It has been suggested that those with high circulating LDL levels in mid-life may be susceptible to develop neurodegenerative diseases in later life. In the circulation, high levels of LDL are associated with increased oxidative modification (oxLDL) and nitration. We have investigated the hypothesis that disruption of blood brain barrier function by oxLDL and their lipids may increase risk of neurodegeneration in later life and that statin intervention in mid-life can mitigate the neurodegenerative effects of hyperlipidaemia. Blood from statin-naïve, normo- and hyperlipidaemic subjects (n=10/group) was collected at baseline. Hyperlipidaemic subjects received statin-intervention whereas normolipidaemic subjects did not prior to a second blood sampling, taken after 3 months. The intervention will be completed in June 2013. Plasma was separated by centrifugation (200g, 30min) and LDL was isolated by potassium bromide density gradient ultracentrifugation. Total homocysteine, LDL cholesterol, 8-isoprostane F2α levels were measured in plasma using commercial kits. LDL were analysed by agarose gel electrophoresis. LDL-lipids were extracted by partitioning in 1:1 chloroform:methanol (v/v) and conjugated to fatty acid free-BSA in serum-free EGM-2 medium (4hrs, 370C) for co-culture with human microvascular endothelial cells (HMVEC). HMVEC were maintained on polycarbonate inserts for two weeks to create a microvascular barrier. Change in barrier permeability was measured by trans-endothelial electrical resistance (TER), FITC-dextran permeability and immunohistochemistry. HMVEC glutathione (GSH) levels were measured after 2 hours by GSH-glo assay. LDL isolated from statin-naïve hyperlipidaemic subjects had higher mobility by agarose gel electrophoresis (Rf;0.53±0.06) and plasma 8-isoprostane F2α (43.5±8.42 pg/ml) compared to control subjects (0.46±0.05 and 24.2±5.37 pg/ml; p<0.05). Compared to HMVEC treatment with the LDL-lipids (5μM) from normolipidaemic subjects, LDL-lipids from hyperlipidaemic subjects increased barrier permeability (103.4±12.5 Ωcm2 v 66.7±7.3 Ωcm2,P<0.01) and decreased GSH (18.5 nmol/mg v 12.3 nmol/mg; untreated cells 26.2±3.6 nmol/mg).
Resumo:
Flavonoids are a class of over 6,500 plant metabolites that have been associated with reduced mortality from cardiovascular disease. A cross-sectional analysis of dietary flavonoids and serum cholesterol in 507 Blacks with and without type 2 diabetes (258 Haitian-Americans and 249 African-Americans) showed differences by ethnicity and diabetes status. Haitian-Americans consumed more of most flavonoids as compared to African-Americans. Individuals with type 2 diabetes consumed less of most flavonoids as compared to those without diabetes. Flavonoids were differentially associated with low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) by diabetes status. Flavanones were associated with lower LDL for participants without diabetes and higher LDL for those with diabetes, independent of ethnicity and adjusted for age, gender, cholesterol medications, daily energy, dietary fat, body mass index (BMI), and smoking. Flavan-3-ols were positively related to LDL while polyflavonoids (theaflavin and polymers, proanthocyanidins) were inversely related to LDL for the group without diabetes only. Higher anthocyanidins and flavan-3-ols and lower polyflavonoids were associated with higher HDL (same adjustments) for those without diabetes, whereas no flavonoids were associated with HDL for individuals with type 2 diabetes.
Resumo:
Background: Statin therapy reduces the risk of occlusive vascular events, but uncertainty remains about potential effects on cancer. We sought to provide a detailed assessment of any effects on cancer of lowering LDL cholesterol (LDL-C) with a statin using individual patient records from 175,000 patients in 27 large-scale statin trials. Methods and Findings: Individual records of 134,537 participants in 22 randomised trials of statin versus control (median duration 4.8 years) and 39,612 participants in 5 trials of more intensive versus less intensive statin therapy (median duration 5.1 years) were obtained. Reducing LDL-C with a statin for about 5 years had no effect on newly diagnosed cancer or on death from such cancers in either the trials of statin versus control (cancer incidence: 3755 [1.4% per year [py]] versus 3738 [1.4% py], RR 1.00 [95% CI 0.96-1.05]; cancer mortality: 1365 [0.5% py] versus 1358 [0.5% py], RR 1.00 [95% CI 0.93-1.08]) or in the trials of more versus less statin (cancer incidence: 1466 [1.6% py] vs 1472 [1.6% py], RR 1.00 [95% CI 0.93-1.07]; cancer mortality: 447 [0.5% py] versus 481 [0.5% py], RR 0.93 [95% CI 0.82-1.06]). Moreover, there was no evidence of any effect of reducing LDL-C with statin therapy on cancer incidence or mortality at any of 23 individual categories of sites, with increasing years of treatment, for any individual statin, or in any given subgroup. In particular, among individuals with low baseline LDL-C (<2 mmol/L), there was no evidence that further LDL-C reduction (from about 1.7 to 1.3 mmol/L) increased cancer risk (381 [1.6% py] versus 408 [1.7% py]; RR 0.92 [99% CI 0.76-1.10]). Conclusions: In 27 randomised trials, a median of five years of statin therapy had no effect on the incidence of, or mortality from, any type of cancer (or the aggregate of all cancer).
Resumo:
The effect of lycopene on macrophage foam cell formation induced by modified low-density lipoprotein (LDL) was studied. Human monocyte-derived macrophages (HMDM) were incubated with lycopene in the presence or absence of native LDL (nLDL) or LDL modified by oxidation (oxLDL), aggregation (aggLDL), or acetylation (acLDL). The cholesterol content, lipid synthesis, scavenger receptor activity, and the secretion of inflammatory [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory (IL-10) cytokines was determined. Lycopene was found to decrease the synthesis of cholesterol ester in incubations without LDL or with oxLDL while triacylglycerol synthesis was reduced in the presence of oxLDL and aggLDL. Scavenger receptor activity as assessed by the uptake of acLDL was decreased by ∼30% by lycopene. In addition, lycopene inhibited IL-10 secretion by up to 74% regardless of the presence of nLDL or aggLDL but did not affect IL-1β or TNF-α release. Lycopene also reduced the relative abundance of mRNA transcripts for scavenger receptor A (SR-A) in THP-1 macrophages treated with aggLDL. These findings suggest that lycopene may reduce macrophage foam cell formation induced by modified LDL by decreasing lipid synthesis and downregulating the activity and expression of SR-A. However, these effects are accompanied by impaired secretion of the anti-inflammatory cytokine IL-10, suggesting that lycopene may also exert a concomitant proinflammatory effect.
Resumo:
Therapeutic plasmapheresis allows the extracorporeal removal of plasmatic lipoproteins (Lipid-apheresis) (LA). It can be non selective (non specific), semi - selective or selective low density lipoprotein-lipoprotein(a) (specific [LDL- Lp(a)] apheresis) (Lipoprotein apheresis, LDLa). The LDL removal rate is a perfect parameter to assess the system efficiency. Plasma-Exchange (PEX) cannot be considered either specific nor, selective. In PEX the whole blood is separated into plasma and its corpuscular components usually through centrifugation or rather filtration. The corpuscular components mixed with albumin solution plus saline (NaCl 0.9%) solution at 20%-25%, are then reinfused to the patient, to substitute the plasma formerly removed. PEX eliminates atherogenic lipoproteins, but also other essential plasma proteins, such as albumin, immunoglobulins, and hemocoagulatory mediators. Cascade filtration (CF) is a method based on plasma separation and removal of plasma proteins through double filtration. During the CF two hollow–fiber filters with pores of different diameter are used to eliminate the plasma components of different weight and molecular diameter. A CF system uses a first polypropylene filter with 0.55 µm diameter pores and a second one of diacetate of cellulose with 0.02 µm pores. The first filter separates the whole blood, and the plasma is then perfused through a second filter which allows the recovery of molecules with a diameter lower than 0.02 µm, and the removal of molecules larger in diameter as apoB100–containing lipoproteins. Since both albumin and immunoglobulins are not removed, or to a negligible extent, plasma-expanders, substitution fluids, and in particular albumin, as occurs in PEX are not needed. CF however, is characterized by lower selectivity since removes also high density lipoprotein (HDL) particles which have an antiatherogenic activity. In the 80’s, a variation of Lipid-apheresis has been developed which allows the LDL-cholesterol (LDLC) (-61%) and Lp(a) (-60%) removal from plasma through processing 3 liters of filtered plasma by means of lipid-specific thermofiltration, LDL immunoadsorption, heparin-induced LDL precipitation, LDL adsorption through dextran sulphate. More recently (90’s) the DALI®, and the Liposorber D® hemoperfusion systems, effective for apoB100- containing lipoproteins removal have been developed. All the above mentioned systems are established LDL-apheresis techniques referable to the generic definition of LDLa. However, this last definition cannot describe in an appropriate manner the removal of another highly atherogenic lipoprotein particle: the Lp(a). Thus it would be better to refer the above mentioned techniques to the wider scientific and technical concept of lipoprotein apheresis. Lipid apheresis - Lipoprotein apheresis - LDL-apheresis - Severe Dyslipidemia.
Resumo:
BACKGROUND: Bilirubin can prevent lipid oxidation in vitro, but the association in vivo with oxidized low-density lipoprotein (Ox-LDL) levels has been poorly explored. Our aim is to the association of Ox-LDL with total bilirubin (TB) levels and with variables related with metabolic syndrome and inflammation, in young obese individuals. FINDINGS: 125 obese patients (13.4 years; 53.6% females) were studied. TB, lipid profile including Ox-LDL, markers of glucose metabolism, and levels of C-reactive protein (CRP) and adiponectin were determined. Anthropometric data was also collected. In all patients, Ox-LDL correlated positively with BMI, total cholesterol, LDLc, triglycerides (TG), CRP, glucose, insulin and HOMAIR; while inversely with TB and HDLc/Total cholesterol ratio (P < 0.05 for all). In multiple linear regression analysis, LDLc, TG, HDLc and TB levels were significantly associated with Ox-LDL (standardized Beta: 0.656, 0.293, -0.283, -0.164, respectively; P < 0.01 for all). After removing TG and HDLc from the analysis, HOMAIR was included in the regression model. In this new model, LDLc remained the best predictor of Ox-LDL levels (β = 0.665, P < 0.001), followed by TB (β = -0.202, P = 0.002) and HOMAIR (β = 0.163, P = 0.010). CONCLUSIONS: Lower bilirubin levels may contribute to increased LDL oxidation in obese children and adolescents, predisposing to increased cardiovascular risk.
Resumo:
Circulating low density lipoproteins (LDL) are thought to play a crucial role in the onset and development of atherosclerosis, though the detailed molecular mechanisms responsible for their biological effects remain controversial. The complexity of biomolecules (lipids, glycans and protein) and structural features (isoforms and chemical modifications) found in LDL particles hampers the complete understanding of the mechanism underlying its atherogenicity. For this reason the screening of LDL for features discriminative of a particular pathology in search of biomarkers is of high importance. Three major biomolecule classes (lipids, protein and glycans) in LDL particles were screened using mass spectrometry coupled to liquid chromatography. Dual-polarity screening resulted in good lipidome coverage, identifying over 300 lipid species from 12 lipid sub-classes. Multivariate analysis was used to investigate potential discriminators in the individual lipid sub-classes for different study groups (age, gender, pathology). Additionally, the high protein sequence coverage of ApoB-100 routinely achieved (≥70%) assisted in the search for protein modifications correlating to aging and pathology. The large size and complexity of the datasets required the use of chemometric methods (Partial Least Square-Discriminant Analysis, PLS-DA) for their analysis and for the identification of ions that discriminate between study groups. The peptide profile from enzymatically digested ApoB-100 can be correlated with the high structural complexity of lipids associated with ApoB-100 using exploratory data analysis. In addition, using targeted scanning modes, glycosylation sites within neutral and acidic sugar residues in ApoB-100 are also being explored. Together or individually, knowledge of the profiles and modifications of the major biomolecules in LDL particles will contribute towards an in-depth understanding, will help to map the structural features that contribute to the atherogenicity of LDL, and may allow identification of reliable, pathology-specific biomarkers. This research was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Program (IEF 255076). Work of A. Rudnitskaya was supported by Portuguese Science and Technology Foundation, through the European Social Fund (ESF) and "Programa Operacional Potencial Humano - POPH".
Resumo:
Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.