505 resultados para Electromyography.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdução: A dificuldade na organização dos ajustes posturais antecipatórios (APAs) é frequentemente associada ao défice de controlo postural (CP) em crianças/jovens com um quadro motor de hemiplegia espástica, resultante de paralisia cerebral. As alterações biomecânicas da tibiotársica e do pé são características comummente observadas nestas crianças/jovens e influenciam o CP na sua globalidade. Objectivo(s): descrever o comportamento dos APAs associados ao início da marcha, face à modificação do alinhamento do pé em crianças/jovens com hemiplegia espástica, após 12 semanas de intervenção, segundo o Conceito Bobath-TND e aplicação de uma Ligadura Funcional (LF). Métodos: Foram avaliadas quatro crianças/jovens num momento inicial (M0) e após 12 semanas de intervenção e de aplicação de uma LF (M1). Recorrendo à eletromiografia de superfície, registaram-se os timings de activação dos músculos tibial anterior, solear, recto abdominal e erector da espinha (bilateralmente). O início do movimento foi calculado a partir da alteração do sinal obtido através da plataforma de pressões. Recorreu-se à aplicação da TMFM-88 para avaliar a função motora global e à aplicação da CIF-CJ para classificar a funcionalidade mediante as actividades e a participação. Procedeu-se ao registo de imagem para facilitar a observação/avaliação das componentes de movimento das crianças/jovens em estudo. Resultados: Após o período de intervenção, verificou-se uma modificação nos valores dos timings de ativação dos músculos em análise, que se aproximaram da janela temporal definida como APAs, bem como na distribuição de carga na base de suporte, nos scores da TMFM-88 e nos qualificadores das “Actividades e Participação”, sugestivos de uma melhor organização dos mecanismos de controlo postural. Conclusão: As crianças/jovens em estudo evidenciaram, após uma intervenção de fisioterapia baseada no Conceito Bobath- TND e aplicação de uma LF, uma evolução favorável tanto ao nível do CP da tibiotársica e do pé, apresentando timings de ativação muscular temporalmente mais ajustados à tarefa, com repercussões positivas nas actividades e participação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and aim of the study: Patients with anterior cruciate ligament (ACL) reconstruction and femoral catheter analgesia may develop quadriceps amyotrophy. We aimed to determine whether this amyotrophy might be related to a femoral neuropathy. Material and method: After Ethical Committee approval and patients' written informed consent, 17 patients ASA I and II scheduled to undergo ACL reconstruction were recruited. An electromyography (EMG) was performed before the operation in order to exclude a femoral neuropathy. A femoral nerve catheter was inserted before the surgery with the aid of a nerve stimulator, and 20 ml of 0.5% ropivacaine was injected. The operation was done under spinal or general anaesthesia. Postoperative analgesia was provided with 0.2% ropivacaine for 72 hours, in association with oxycodone, paracetamol and ibuprofen. A second EMG was performed 4 weeks after the ACL repair. A femoral neuropathy was defined as a reduction of the surface of the motor response of more than 20%, compared to the first EMG. A third EMG was performed at 6 months if a neuropathy was present. Results: Mean age of this group of patients was 27 years old (range 18-38 y.). Among the 17 patients, 4 developed a transient femoral neuropathy (incidence of 24%) without clinical complain. Conclusion: In this study, the incidence of subclinical femoral neuropathy after ACL reconstruction is high. This lesion may be caused by the femoral catheter (mechanical damage, toxicity of local anaesthesia) or by the Tourniquet. Further studies are needed to investigate the incidence of subclinical neuropathy, according to the type of analgesia (epidural analgesia, PCA) and surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the safety and efficacy of 50-Hz repetitive transcranial magnetic stimulation (rTMS) in the treatment of motor symptoms in Parkinson disease (PD). BACKGROUND: Progression of PD is characterized by the emergence of motor deficits that gradually respond less to dopaminergic therapy. rTMS has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. Prior controlled studies suggest that an increase in stimulation frequency might enhance therapeutic efficacy. METHODS: In this randomized, double blind, sham-controlled study, the authors investigated the safety and efficacy of 50-Hz rTMS of the motor cortices in 8 sessions over 2 weeks. Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neurophysiological, and neuropsychological parameters. In addition, the safety of 50-Hz rTMS was tested with electromyography-electroencephalogram (EMG-EEG) monitoring during and after stimulation. RESULTS: The authors investigated 26 patients with mild to moderate PD: 13 received 50-Hz rTMS and 13 sham stimulation. The 50-Hz rTMS did not improve gait, bradykinesia, and global and motor UPDRS, but there appeared a short-lived "on"-state improvement in activities of daily living (UPDRS II). The 50-Hz rTMS lengthened the cortical silent period, but other neurophysiological and neuropsychological measures remained unchanged. EMG/EEG recorded no pathological increase of cortical excitability or epileptic activity. There were no adverse effects. CONCLUSION: It appears that 50-Hz rTMS of the motor cortices is safe, but it fails to improve motor performance and functional status in PD. Prolonged stimulation or other techniques with rTMS might be more efficacious but need to be established in future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this research was to examine the relationship between surface electromyographic (SEMG) spike activity and force. The secondary objective was to determine to what extent subcutaneous tissue impacts the high frequency component of the signal, as well as, examining the relationship between measures of SEMG spike shape and their traditional time and frequency analogues. A total of96 participants (46 males and 50 females) ranging in age (18-35 years), generated three 5-second isometric step contractions at each force level of 40, 60, 80, and 100 percent of maximal voluntary contraction (MVC). The presentation of the contractions was balanced across subjects. The right arm of the subject was positioned in the sagittal plane, with the shoulder and elbow flexed to 90 degrees. The elbow rested on a support in a neutral position (mid pronation/mid supination) and placed within a wrist cuff, fastened below the styloid process. The wrist cuff was attached to a load cell (JR3 Inc., Woodland, CA) recording the force produced. Biceps brachii activity was monitored with a pair of Ag/AgCI recording electrodes (Grass F-E9, Astro-Med Inc., West Warwick, RI) placed in a bipolar configuration, with an interelectrode distance (lED) of 2cm distal to the motor point. Data analysis was performed on a I second window of data in the middle of the 5-second contraction. The results indicated that all spike shape measures exhibited significant (p < 0.01) differences as force increase~ from 40 to 100% MVC. The spike shape measures suggest that increased motor unit (MU) recruitment was responsible for increasing force up to 80% MVC. The results suggested that further increases in force relied on MU III synchronization. The results also revealed that the subcutaneous tissue (skin fold thickness) had no relationship (r = 0.02; P > 0.05) with the mean number of peaks per spike (MNPPS), which was the high frequency component of the signal. Mean spike amplitude (MSA) and mean spike frequency (MSF) were highly correlated with their traditional measures root mean square (RMS) and mean power frequency (MPF), respectively (r = 0.99; r = 0.97; P < 0.01).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-six sedentary, college-aged females were matched and randomly assigned to one of two groups. The massed group (n=13) completed 15 maximal isometric elbow flexion strength trials in one session, while the distributed group (n=13) performed five such contractions on three successive days. After a two-week and three month rest interval, both groups returned to perfonn another five maximal isometric elbow flexion strength trials to assess retention of any potential strength gains. Elbow flexion torque and surface electromyography (SEMG) of the biceps and triceps were monitored concurrently. There was a significant (P < 0.05) increase in strength in both groups from block one (first five contractions) to block four (first retest) and from block one to block five (second retest). Both groups exhibited a similar linear increasing (P < 0.05) trend in biceps root-mean-square (RMS) SEMG amplitude. A significant (P < 0.05) decrease in triceps RMS SEMG amplitude was found between block one and block four for the distributed group. However, a significant (P < 0.05) increase was then found between block one and five for the massed group, and between blocks four and five for distributed group. These results suggest that there is flexibility in resistive exercise schedules. An increase in neural drive to the agonist muscle continued throughout testing. This was accompanied by a reduction in antagonist co activation that was a short-tenn (two weeks) training effect, dissipated over the longer rest interval (three months).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Active Isolated Stretching (AIS) technique proposes that by contracting a muscle (agonist) the opposite muscle (antagonist) will relax through reciprocal inhibition and lengthen without increasing muscle tension (Mattes, 2000). The clinical effectiveness of AIS has been reported but its mechanism of action has not been investigated at the tissue level. Proposed mechanisms for increased range of motion (ROM) include mechanical or neural changes, or an increased stretch tolerance. The purpose of the study was to investigate changes in mechanical properties, i.e. stiffness, of skeletal muscle in response to acute and long-term AIS stretching for the hamstring muscle group. Recreationally active university-aged students (female n=8, male n=2) classified as having tight hamstrings, by a knee extension test, volunteered for the study. All stretch procedures were performed on the right leg, with the left leg serving as a control. Each subject was assessed twice: at an initial session and after completing a 6-week AIS hamstring stretch training program. For both test sessions active knee extension (ROM) to a position of "light irritation", passive resisted torque and stiffness were determined before and after completion of the AIS technique (2x10 reps). Data were collected using a Biodex System 3 Pro (Biodex Medical Systems, NY, USA) isokinetic dynamometer. Surface electromyography (EMG) was used to monitor vastus lateralis (VL) and hamstring muscle activity during the stretching movements. Between test sessions, 2x10 reps of the AIS bent knee hamstring stretch were performed daily for 6-weeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document could not have been completed without the hard work of a number of individuals. First and foremost, my supervisor, Dr. David Gabriel deserves the utmost recognition for the immense effort and time spent guiding the production of this document through the various stages of completion. Also, aiding in the data collection, technical support, and general thought processing were Lab Technician Greig Inglis and fellow members of the Electromyographic Kinesiology Laboratory Jon Howard, Sean Lenhardt, Lara Robbins, and Corrine Davies-Schinkel. The input of Drs. Ted Clancy, Phil Sullivan and external examiner Dr. Anita Christie, all members ofthe assessment committee, was incredibly important and vital to the completion of this work. Their expertise provided a strong source of knowledge and went to ensure that this project was completed at exemplary level. There were a number of other individuals who were an immense help in getting this project off the ground and completed. The donation of their time and efforts was very generous and much needed in order to fulfill the requirements needed for completion of this study. Finally, I cannot exclude the contributions of my family throughout this project especially that of my parents whose support never wavers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined muscle strength, muscle performance, and neuromuscular function during contractions at different velocities across maturation stages and between sexes. Participants included pre-pubertal, late-pubertal and adult males and females. All completed 8 isometric and 8 isokinetic leg extensions at two different velocities. Peak torque (PT), rate of torque development (PrTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle activation efficiency and coactivation were determined. Sex, maturity, and velocity main effects were found in PT and PrTD, reflecting greater values in men, adults, and isometric contractions respectively. When values were normalized to quadriceps cross-sectional area (qCSA), there was still an increase with maturity. EMD decreased with maturity. Adults had greater activation efficiency than children. Overall, differences in muscle size and neuromuscular function failed to explain group differences in PT or PrTD. More research is needed to investigate why adults may be affected to a greater extent by increasing movement velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenomenon of over-recovery consists of a participant’s maximal force levels returning to values above initial levels. The present study examined the presence and causes of over-recovery following local muscular fatigue. Fourteen males completed two fatigue protocols consisting of maximal isometric dorsiflexion contractions. Upon completion of the fatigue protocol participants’ force was monitored over a 15 minute recovery period. Dorsiflexion force and surface electromyography (sEMG) from the tibialis anterior and soleus were monitored concurrently. Following the two fatigue conditions (10 and 20% force decrement) force recovered to 100.5 and 99.5% of initial levels for each condition, respectively. Surface EMG root-mean-square amplitude and MPF exhibited changes consistent with a warm-up effect. It was concluded that over-recovery was not present in the tibialis anterior following a local muscular fatigue. However, the return in force to initial values, rather than a persistent decrement as normally observed, was mediated by the warm-up effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined how perturbation-evoked compensatory arm reactions in individuals with Parkinson’s disease (PD) are influenced by explicit verbal instruction. Ten individuals with PD and 15 older adults without PD responded to surface translations with or without specific instruction to reach for and grasp the handrail. Electromyographic (EMG) and kinematic recordings were taken from the reaching arm. Results showed that individuals with and without PD benefitted similarly from explicit instruction. Explicit instruction resulted in earlier (p=0.005) and larger (p<0.001) medial deltoid EMG responses in comparison to no specific instructions. Compensatory arm reactions also occurred with a higher peak medio-lateral wrist velocity (p<0.001) and higher peak shoulder abduction angular velocity (p<0.001) with explicit instruction. Explicit instruction positively influenced compensatory arm reactions in individuals with and without PD. Future research is needed to determine whether the benefits of instruction persist over time and translate to a loss of balance in real life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examined a wrist extension-to-flexion contraction pattern that was theorized to result in proprioceptive neuromuscular facilitation. However, the “reversal of antagonists” contraction pattern may have, alternatively, interfered with motor learning-related increases in strength. Participants (N=24) were matched on predicted strength and randomly assigned to either the control or experimental group. Training occurred during three test sessions within a one-week period. Retention and transfer (crossed-condition) tests were administered during a fourth test session two- weeks later. Both groups exhibited comparable increases in strength (20.2%) and decreases in muscle coactivation (35.2%), which were retained and transferred. Decreases in error and variability of the torque traces were associated with parallel decreases in variability of muscle activity. The reversal of antagonists technique did not interfere with motor learning-related increases in strength and decreases in variability. However, the more complex contraction pattern failed to result in proprioceptive neuromuscular facilitation of strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indwelling electromyography (EMG) has great diagnostic value but its invasive and often painful characteristics make it inappropriate for monitoring human movement. Spike shape analysis of the surface electromyographic signal responds to the call for non-invasive EMG measures for monitoring human movement and detecting neuromuscular disorders. The present study analyzed the relationship between surface and indwelling EMG interference patterns. Twenty four males and twenty four females performed three isometric dorsiflexion contractions at five force levels from 20% to maximal force. The amplitude measures increased differently between electrode types, attributed to the electrode sensitivity. The frequency measures were different between traditional and spike shape measures due to different noise rejection criteria. These measures were also different between surface and indwelling EMG due to the low-pass tissue filtering effect. The spike shape measures, thought to collectively function as a means to differentiate between motor unit characteristics, changed independent of one another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the effect of 8-weeks of resistance (RT) and plyometric (PLYO) training on maximal strength, power and jump performance compared with no added training (CON), in young male soccer players. Forty-one 11-13 year-old soccer players were divided into three groups (RT, PLYO, CON). All participants completed 5 isometric knee extensions at 90° and 5 isokinetic knee extensions at 240°/s pre- and post-training. Peak torque (PT), peak rate of torque development (pRTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle cross-sectional area (mCSA) and jump performance were examined. Both RT and PLYO resulted in significant (p < 0.05) increases in PT, pRTD and jump performance. RT resulted in significantly greater increases in both isometric and isokinetic PT, while PLYO resulted in significantly greater increases in isometric pRTD and jump performance compared with CON (p < 0.05). Q30 increased to a greater extent in PLYO (20%) compared with RT (5%) and CON (-5%) (p = 0.1). In conclusion, 8-weeks of RT and PLYO resulted in significant improvements in muscle strength and jump performance. RT appears to be more effective at eliciting increases in maximal strength while PLYO appears to enhance explosive strength, mediated by possible increases in the rate of muscle activation.