850 resultados para Electrochemical stabilities
Resumo:
We investigate the comparative stability of sp(2) bonded planar hexagonal boron nitride (h-BN) nanoribbon (BNNR) edges, using first principles calculations. We find that the pristine armchair edges have the highest degree of stability. Pristine zigzag edges are metastable, favoring planar reconstructions in the form of 5-7 rings] that minimizes the energy. Our investigation further reveals that the pristine zigzag edges can be stabilized against 5-7 reconstructions by passivating the dangling bonds at the edges by other elements, such as hydrogen (H) atoms. Electronic and magnetic properties of nanoribbons depend on the edge shapes and are strongly affected by edge reconstructions.
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a �Full Text� option. The original article is trackable via the �References� option.
Resumo:
Three new cationic amphiphiles bearing anthraquinone moieties at the polar headgroup region were synthesized, The single-chain amphiphile, N,N-dimethyl-N-octadecyl-N-(9,10-dihydro dioxoanthracen-2-ylmethyl)ammonium bromide 1, in the presence of cetyltrimethylammonium bromide upon dispersion in water gave co-micellar aggregates containing covalently attached anthraquinone residues at the polar aqueous interfaces. The other two double-chain amphiphiles, N,N-dioctadecyl-N-methyl-N-(9,10-dihydro-9,10-dioxoanthracen-2-ylmethyl)ammonium bromide 2 and N,N-dimethyl-N-(1,2-bispalmitoyloxypropanyl)-N-(9,10-dihydro-9,10-dioxanthracen-2-ylmethyl)ammonium bromide 3, however, on dispersion in aqueous media produced vesicular aggregates. The critical temperatures for the gel to liquid-crystalline-like phase transition processes for the vesicular systems were determined by following temperature-dependent changes in the ratios of keto-enol tautomeric forms of benzoylacetanilide doped within respective. vesicular assemblies. The redox chemistry of the these supramolecular assemblies was also studied by following the time-dependent changes in the ITV-VIS absorption spectroscopy in the presence of exogenous reducing or oxidizing agents, Electrochemical studies using glassy carbon electrodes reveal that redox-active amphiphiles adsorb on to the glassy carbon surfaces to form electroactive deposits when dipped into aqueous suspensions of either of these aggregates irrespective of the micellar or vesicular nature of the dispersions.
Resumo:
The stabilities of a number of small adducts as well as larger hydrides of C-60 and C-70 are reported using semiempirical MO methods. The data are shown to be consistent with the nature of bond alternation in the parent fullerenes and strain effects in the cage systems.
Resumo:
In the present work a gold modified pencil graphite electrode (GPGE) was used for the determination of L-dopa present in the aqueous extracts of Mucuna pruriens seeds (MPS), Mucuna pruriens leaves (MPL) and Commercial Siddha Product (CSP). The GPGE shows excellent electrocatalytic activity towards the oxidation of both L-dopa and ascorbic acid (AA), with the separation of peak potential of 98 mV. The differential pulse voltammetric (DPV) results indicated that the detection limit for L-dopa was 1.54 mu M (S/N=3). This method can be successfully applied for the determination of L-dopa in real samples.
Resumo:
The methane-hydrogen gas equilibration technique has been used to measure the chemical potential of carbon associated with two three-phase fields of the system U-W-C in the temperature range 973 to 1173 K. By combining the values of the chemical potential of carbon in the three-phase fields UC + W + UWC1.75 and UC + UWC1.75 + UWC2 Obtained in this study with the data on the Gibbs energy of formation of UC available in the literature, expressions for the Gibbs energies of formation of the two ternary carbides were derived: Delta(f)G degrees [UWC1.75] = -131, 600 - 300 T (+/-8000) J mol(-1) Delta(f)G degrees [UWC2] = -144, 800 - 32.0 T (+/- 10,000) J mol(-1) Although estimates of Gibbs energies of formation of the two ternary carbides TSWC1.75 and UWC2 have been reported, there have been no previous experimental determinations of thermodynamic properties of these compounds.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mesoporous MnO2 is prepared from KMnO4 by using a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) as a reducing as well as a structure-directing agent. The as synthesized MnO2 samples are poorly crystalline with mesoporosity having pore diameter between 8 and 40 nm. BET surface area as high as 273 m(2) g(-1) is obtained. By heating, the poorly crystalline MnO2 turns into a well crystalline form at 400 degrees C with nanorod morphology. However, the surface area decreases for the heated samples. Samples of MnO2 prepared by varying the ratio of KMnO4 and the copolymer, and also the heated samples are subjected to electrochemical characterization for supercapacitor studies. High specific capacitance values on mass basis are obtained for the as prepared mesoporous MnO2 samples. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A few fixed distance covalently linked porphyrin-quinone molecules have been synthesized in which a benzoquinone is directly attached to a meso/beta-pyrrole position of tri(phenyl/pentafluorophenyl)/tetraphenylporphyrins. The choice of fluoroarylporphyrins permit modulation of Delta G(ET) values for photoinduced electron-transfer reactions in these systems. All short distance porphyrin-quinone molecules showed efficient quenching of the porphyrin singlet excited state. The electrochemical redox data coupled with the steady-state and time-resolved singlet emission data are analysed to evaluate the dependence of Delta G(ET) values on the rate of electron transfer (k(ET)) in these systems. The meso-trifluoroarylporphyrin-quinones are found to be sensitive probes of the surrounding dielectric environment. Varying solvent polarity on the mechanism of fluorescence quenching and k(ET) values revealed that short donor-acceptor distance and the solvent dielectric relaxation properties play a dominant role. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Nanoclusters of bimetallic Pt-Ru are electrochemically deposited on conductive polymer, poly(3,4-ethylenedioxythiophene)(PEDOT), which is also electrochemically deposited on a carbon paper substrate. The bimetallic deposition is carried out in an acidic electrolyte consisting of chloroplatinic acid and ruthenium chloride at 0.0 V versus saturated calomel electrode (SCE) on PEDOT coated carbon paper. A thin layer PEDOT on a carbon paper substrate facilitates the formation of uniform, well-dispersed, nano clusters of Pt-Ru of mean diameter of 123 nm, which consist of nanosize particles. In the absence of PEDOT, the size of the clusters is about 251 nm, which are unevenly distributed on carbon paper substrate. Cyclic voltammetry studies suggest that peak currents of methanol oxidation are several times greater on PtRu-PEDOT electrode than on Pt-Ru electrode in the absence of PEDOT. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H(2)Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (gamma(cv)) of the PANI was defined. There was an increase in gamma(cv) with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H(2)Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i(0)) calculated using the semicircle part of the impedance showed Butler-Volmer kinetics with respect to concentration dependence. From a relative increase of i(0) on the PANI/Pt electrode, catalytic efficiency (gamma(eis)) was evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
instead of using chemical-reducing agents to facilitate the reduction and dissolution of manganese and iron oxide in the ocean nodule, electrochemical reduction based on two approaches, namely, cathodic polarization and galvanic interaction, can also be considered as attractive alternatives. Galvanic leaching of ocean nodules in the presence of pyrite and pyrolusite for complete recovery of Cu, Ni and Co has been discussed. The key for successful and efficient dissolution of copper, nickel and cobalt from ocean nodules depends on prior reduction of the manganese and ferric oxides with which the above valuable nonferrous metals are interlocked. Polarization studies using a slurry electrode system indicated that maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 mV (SCE) and -1400 mV (SCE). The present work is also relevant to galvanic bioleaching of ocean nodules using autotrophic microorganisms, such as Thiobacillus ferrooxidans and T thiooxidans, which resulted in significant dissolution of copper, nickel and cobalt at the expense of microbiologically generated acids. Various electrochemical and biochemical mechanisms are outlined and the electroleaching and galvanic processes so developed are shown to yield almost complete dissolution of all metal values. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, electroleaching and electrobioleaching of ocean manganese nodules are discussed along with the role of galvanic interactions in bioleaching. Polarization studies using a manganese nodule slurry electrode system indicated that the maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 and -1,400 mV(SCE). Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans at the above negative applied DC potentials resulted insignificant dissolution of copper, nickel and cobalt in 1 M H2SO4 and in sulfuric acid solution at pH 0.5 and 2.0. Mechanisms involved in electrobioleaching of ocean manganese nodules are discussed. Galvanic leaching of ocean manganese nodules in the presence of externally added pyrite and pyrolusite for enhancement of dissolution was also studied. Various electrochemical and biochemical parameters were optimized, and the electroleaching and galvanic processes thus developed are shown to yield almost complete dissolution of all metal values. This electrobioleaching process developed in the laboratory may be cost effective, energy efficient and environmentally friendly.