918 resultados para Eigenfunctions and fundamental solution
Resumo:
We survey articles on hedge funds' performance persistence and fundamental factors from the mid-1990s to the present. For performance persistence, we present some pioneering studies that contradict previous findings that hedge funds' performance is a short term matter. We discuss recent innovative studies that examine the size, age, performance fees and other factors to give a 360° view of hedge funds' performance attribution. Small funds, younger funds and funds with high performance fees all outperform the opposite. Long lockup period funds tend to outperform short lockups and domiciled funds tend to outperform offshore funds. This is the first survey of recent innovative and challenging studies into hedge funds' performance attribution, and it should be particularly useful to investors trying to choose between hedge funds.
Resumo:
The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices) and three main milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.
Resumo:
B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.
Resumo:
Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
Background: Previous studies have shown that fundamental movement skills (FMS) and physical activity are related. Specifically, earlier studies have demonstrated that the ability to perform a variety of FMS increases the likelihood of children participating in a range of physical activities throughout their lives. To date, however, there have not been studies focused on the development of, or the relationship between, these variables through junior high school (that is, between the ages of 13 and 15). Such studies might provide important insights into the relationships between FMS and physical activity during adolescence, and suggest ways to design more effective physical education programmes for adolescents. Purpose: The main purposes of the study are: (1) to investigate the development of the students' self-reported physical activity and FMS from Grade 7 to Grade 9, (2) to analyse the associations among the students' FMS and self-reported physical activity through junior high school, (3) to analyse whether there are gender differences in research tasks one and/or two. Participants and setting: The participants in the study were 152 Finnish students, aged 13 and enrolled in Grade 7 at the commencement of the study. The sample included 66 girls and 86 boys who were drawn from three junior high schools in Middle Finland. Research design and data collection: Both the FMS tests and questionnaires pertaining to self-reported physical activity were completed annually during a 3 year period: in August (when the participants were in Grade 7), January (Grade 8), and in May (Grade 9). Data analysis: Repeated measures multivariate analysis of variances (MANOVAs) were used to analyse the interaction between gender and time (three measurement points) in FMS test sumscores and self-reported physical activity scores. The relationships between self-reported physical activity scores and fundamental movement skill sumscores through junior high school were analysed using Structural Equation Modelling (SEM) with LISREL 8.80 software. Findings: The MANOVA for self-reported physical activity demonstrated that both genders' physical activity decreased through junior high school. The MANOVA for the FMS revealed that the boys' FMS sumscore increased whereas the girls' skills decreased through junior high school. The SEM and squared multiple correlations revealed FMS in Grades 7 and 8 as well as physical activity in Grade 9 explained FMS in Grade 9. The portion of prediction was 69% for the girls and 55% for the boys. Additionally, physical activity measured in Grade 7 and FMS measured in Grade 9 explained physical activity in Grade 9. The portion of prediction was 12% for the girls and 29% for the boys. In the boys' group, three additional paths were found; FMS in Grade 7 explained physical activity in Grade 9, physical activity in Grade 7 explained FMS in Grade 8, and physical activity in Grade 7 explained physical activity in Grade 8. Conclusions: The study suggests that supporting and encouraging FMS and physical activity are co-related and when considering combined scores there is a greater likelihood of healthy lifelong outcomes. Therefore, the conclusion can be drawn that FMS curriculum in school-based PE is a plausible way to ensure good lifelong outcomes. Earlier studies support that school physical education plays an important role in developing students FMS and is in a position to thwart the typical decline of physical activity in adolescence. These concepts are particularly important for adolescent girls as this group reflects the greatest decline in physical activity during the adolescent period.
Resumo:
This thesis examines the role of government as proprietor, preserver and user of copyright material under the Copyright Act 1968 (Cth) and the policy considerations which Australian law should take into account in that role. There are two recurring themes arising in this examination which are significant to the recommendations and conclusions. The first is whether the needs and status of government should be different from private sector institutions, which also obtain copyright protection under the law. This theme stems from the 2005 Report on Crown Copyright by the Copyright Law Review Committee and the earlier Ergas Committee Report which are discussed in Chapters 2 and 8 of this thesis. The second is to identify the relationship between government copyright law and policy, national cultural policy and fundamental governance values. This theme goes to the essence of the thesis. For example, does the law and practice of government copyright properly reflect technological change in the way we now access and use information and does it facilitate the modern information management principles of government? Is the law and practice of government copyright consistent with the greater openness and accountability of government? The thesis concludes that government copyright law and practice in each of the three governmental roles recognised under the Copyright Act 1968 has not responded adequately to the information age and to the desire and the ability of individuals to access information quickly and effectively. The solution offered in this thesis is reform of the law and of public policy that is in step with access to information policy, the promotion of better communication and interaction with the community, and the enhanced preservation of government and private copyright materials for reasons of government accountability, effective administration and national culture and heritage.
Resumo:
BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.
Resumo:
Ever since sodium fluorescein (‘fluorescein’ [FL]) was first used to investigate the ocular surface over a century ago, the term ‘staining’ has been taken to mean the presence of ocular surface fluorescence [1]. This term has not been necessarily taken to infer any particular mechanism of causation, and indeed, can be attributed to a variety of possible aetiologies [2]. In recent times, there has been considerable interest in a form of ocular surface fluorescence seen in association with the use of certain combinations of soft contact lenses and multipurpose solutions. The first clinical account of this phenomenon was reported by Jones et al. [3], which was followed by a more formal investigation by the same author in 2002 [4]. Jones et al described this appearance as a ‘classic solution-based toxicity reaction’. Subsequently, this appearance has come to be known as ‘solution-induced corneal staining’ or more recently by the acronym ‘SICS’ [5]. The term SICS is potentially problematic in that from a cell biology point of view, there is an inference that ‘staining’ means the entry of a dye into corneal epithelial cells. Morgan and Maldonado-Codina [2] noted there was no foundation of solid scientific literature underpinning our understanding of the true basic causative mechanisms of this phenomenon; since that time, further work has been published in this field [6] and [7] but questions still remain about the precise aetiology of this phenomenon...
Resumo:
Pro-Gly segments in peptides and proteins are prone to adopt the 0-turn conformation. This paper reports experimental data for the presence of this conformation in a linear tripeptide N-acetyl-L-prolylglycyl-L-phenylalanineb oth in the solid state and in solution. X-ray diffraction data on the tripeptide crystal show that it exists in the type I1 0-turn conformation. CD and proton NMR data show that this conformation persists in trifluoroethanol and methanol solutions in equilibrium with the nonhydrogen-bonded structures. Isomerization around the acetyl-prolyl bond is seen to take place in dimethyl sulfoxide solutions of the tripeptide.
Resumo:
A thorough investigation of salt concentration dependence of lithium DNA fibres is made using X-ray diffraction. While for low salt the C-form pattern is obtained, crystalline B-type diffraction patterns result on increasing the salt concentration. The salt content in the gel (from which fibres are drawn) is estimated by equilibrium dialysis using the Donnan equilibrium principle. The salt range giving the best crystalline B pattern is determined. It is found that in this range meridional reflections occur on the fourth and sixth layer lines. In addition, the tenth layer meridian is absent at a particular salt concentration. These results strongly suggest the presence of non-helical features in the DNA molecule. Preliminary analysis of the diffraction patterns indicates a structural variability within the B-form itself. Further, the possibility of the structural parameters of DNA being similar in solid state and in solution is discussed.
Resumo:
Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.
Resumo:
Six models (Simulators) are formulated and developed with all possible combinations of pressure and saturation of the phases as primary variables. A comparative study between six simulators with two numerical methods, conventional simultaneous and modified sequential methods are carried out. The results of the numerical models are compared with the laboratory experimental results to study the accuracy of the model especially in heterogeneous porous media. From the study it is observed that the simulator using pressure and saturation of the wetting fluid (PW, SW formulation) is the best among the models tested. Many simulators with nonwetting phase as one of the primary variables did not converge when used along with simultaneous method. Based on simulator 1 (PW, SW formulation), a comparison of different solution methods such as simultaneous method, modified sequential and adaptive solution modified sequential method are carried out on 4 test problems including heterogeneous and randomly heterogeneous problems. It is found that the modified sequential and adaptive solution modified sequential methods could save the memory by half and as also the CPU time required by these methods is very less when compared with that using simultaneous method. It is also found that the simulator with PNW and PW as the primary variable which had problem of convergence using the simultaneous method, converged using both the modified sequential method and also using adaptive solution modified sequential method. The present study indicates that pressure and saturation formulation along with adaptive solution modified sequential method is the best among the different simulators and methods tested.
Resumo:
221 p.